Asymptotic of the density of states for the Schr{umlt o}dinger operator with periodic electromagnetic potential
Journal Article
·
· Journal of Mathematical Physics
- CNRS UMR 6629, Department de Mathematiques, Universite de Nantes, 2, rue de la Houssiniere, BP 92208 F-44322 Nantes Cedex 3 (France)
For the Schr{umlt o}dinger operator in L{sup 2}({bold R}{sup n}), n{gt}1, with C{sup {infinity}} periodic electromagnetic potential, we give an asymptotic formula of the integrate density of states of the form N({mu})=a{sub n}{mu}{sup n/2}+{bold O}({mu}{sup (n{minus}2+{epsilon})/2}), {forall}{epsilon}{gt}0. When n=2, this estimate enables us to prove the finiteness of gaps in the spectrum. {copyright} {ital 1997 American Institute of Physics.}
- OSTI ID:
- 526894
- Journal Information:
- Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 8 Vol. 38; ISSN JMAPAQ; ISSN 0022-2488
- Country of Publication:
- United States
- Language:
- English
Similar Records
Quantum canonical transformations and exact solution of the Schr{umlt o}dinger equation
Separation of variables in (1+2)-dimensional Schr{umlt o}dinger equations
Lattice Schr{umlt o}dinger-equation approach for excitation and ionization of He{sup +} by antiproton impact
Journal Article
·
Tue Jul 01 00:00:00 EDT 1997
· Journal of Mathematical Physics
·
OSTI ID:530075
Separation of variables in (1+2)-dimensional Schr{umlt o}dinger equations
Journal Article
·
Fri Jan 31 23:00:00 EST 1997
· Journal of Mathematical Physics
·
OSTI ID:466885
Lattice Schr{umlt o}dinger-equation approach for excitation and ionization of He{sup +} by antiproton impact
Journal Article
·
Fri Oct 31 23:00:00 EST 1997
· Physical Review A
·
OSTI ID:543796