Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Asymptotic of the density of states for the Schr{umlt o}dinger operator with periodic electromagnetic potential

Journal Article · · Journal of Mathematical Physics
DOI:https://doi.org/10.1063/1.532105· OSTI ID:526894
 [1]
  1. CNRS UMR 6629, Department de Mathematiques, Universite de Nantes, 2, rue de la Houssiniere, BP 92208 F-44322 Nantes Cedex 3 (France)

For the Schr{umlt o}dinger operator in L{sup 2}({bold R}{sup n}), n{gt}1, with C{sup {infinity}} periodic electromagnetic potential, we give an asymptotic formula of the integrate density of states of the form N({mu})=a{sub n}{mu}{sup n/2}+{bold O}({mu}{sup (n{minus}2+{epsilon})/2}), {forall}{epsilon}{gt}0. When n=2, this estimate enables us to prove the finiteness of gaps in the spectrum. {copyright} {ital 1997 American Institute of Physics.}

OSTI ID:
526894
Journal Information:
Journal of Mathematical Physics, Journal Name: Journal of Mathematical Physics Journal Issue: 8 Vol. 38; ISSN JMAPAQ; ISSN 0022-2488
Country of Publication:
United States
Language:
English

Similar Records

Quantum canonical transformations and exact solution of the Schr{umlt o}dinger equation
Journal Article · Tue Jul 01 00:00:00 EDT 1997 · Journal of Mathematical Physics · OSTI ID:530075

Separation of variables in (1+2)-dimensional Schr{umlt o}dinger equations
Journal Article · Fri Jan 31 23:00:00 EST 1997 · Journal of Mathematical Physics · OSTI ID:466885

Lattice Schr{umlt o}dinger-equation approach for excitation and ionization of He{sup +} by antiproton impact
Journal Article · Fri Oct 31 23:00:00 EST 1997 · Physical Review A · OSTI ID:543796