Metal hydride storage for mobile and stationary applications
Metal hydrides offer the possibility of a convenient and safe method for the storage of hydrogen. These compounds provide for compact storage in a form that is equal to or better than cryogenic liquid hydrogen on a volume basis. Considerable research has gone into the study of hydrides derived from rare earth, iron-titanium, and magnesium alloys. The formation of these compounds is reversible and the chemistry of relevant hydrides has been discussed. Heat must be provided to decompose these compounds and release the hydrogen, while heat is liberated when the compounds are formed and must be removed to allow the hydriding reactions to proceed to completion. The iron-titanium and magnesium alloys are especially promising hydride storage media, the former in stationary applications, or where weight is not a limiting consideration, and the latter for mobile applications. Each of these materials has unique pressure-temperature characteristics and reaction kinetics which must be considered in the design of a hydrogen storage system. These special characteristics are discussed for particular applications. The results of recent work on hydrogen storage development and the engineering design of storage systems are reviewed.
- OSTI ID:
- 5267428
- Report Number(s):
- CONF-760678-29
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hydrogen storage via metal hydrides for utility and automotive energy storage applications. [HCl electrolysis for H/sub 2/--Cl/sub 2/ fuel cells]
Hydrogen storage in the form of metal hydrides
Related Subjects
080201* -- Hydrogen-- Chemisorption Storage
36 MATERIALS SCIENCE
360105 -- Metals & Alloys-- Corrosion & Erosion
ALKALINE EARTH METAL COMPOUNDS
ALLOYS
AUTOMOBILES
HYDRIDES
HYDROGEN COMPOUNDS
HYDROGEN STORAGE
INTERMETALLIC COMPOUNDS
IRON ALLOYS
IRON COMPOUNDS
IRON HYDRIDES
MAGNESIUM ALLOYS
MAGNESIUM COMPOUNDS
MAGNESIUM HYDRIDES
SORPTIVE PROPERTIES
STORAGE
TITANIUM ALLOYS
TITANIUM COMPOUNDS
TITANIUM HYDRIDES
TRANSITION ELEMENT COMPOUNDS
VEHICLES