Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Unified fluid/kinetic description of magnetized plasmas

Technical Report ·
OSTI ID:5264227

Unified fluid/kinetic equations for the plasma perturbed density ({tilde n}), parallel flow velocity ({tilde u}{sub {parallel}}) and temperature ({tilde T}) are developed in a sheared slab geometry by calculating the fluid moment closure relations kinetically. At first, a set of (unclosed) nonlinear perturbed fluid equations for {tilde n}, {tilde u}{sub {parallel}} and {tilde T} is developed using a drift ordering analysis and a new gyroviscous force ({del} {center dot} {product}{sub g}). Thereafter, to develop linear closure relations for b {center dot} {del} {center dot} {tilde product}{sub {parallel}} and {tilde q}{sub {parallel}}, a drift-kinetic version of a Chapman-Enskog-like (CEL) equation is developed and solved by using a moment approach and a physically realistic collision operator (Lorentz scattering operator plus the momentum restoring terms.) The resultant closure relations for b {center dot} {del} {center dot} {tilde product}{sub {parallel}} and {tilde q}{sub {parallel}} unify both the fluid and kinetic approaches. In the collisional fluid limit the equations reduce to the well-known Braginskii equations. In the adiabatic limit they reproduce the usual kinetic results, including Landau damping. It is shown that the CEL approach is more compatible with a fluid-like description of plasmas than the usual drift/gyro kinetic approach. A remarkable simplification of these complicated closure relations is achieved by using single power of plasma dispersion functions with modified arguments. The results are compared with other recently developed Landau damping models and shown to be more accurate, complete and physically meaningful. The resultant set of nonlinear fluid/kinetic equations (with linear closure relations) will be applied to various microinstabilities in tokamak plasmas and drift type microturbulence in a separate paper. 19 refs., 7 refs., 1 tab.

Research Organization:
Wisconsin Univ., Madison, WI (United States)
Sponsoring Organization:
DOE; USDOE, Washington, DC (United States)
DOE Contract Number:
FG02-86ER53218
OSTI ID:
5264227
Report Number(s):
UW-CPTC-91-7; ON: DE91018262
Country of Publication:
United States
Language:
English