Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The radiation-induced crystalline-to-amorphous transition in zircon

Journal Article · · Journal of Materials Research; (United States)
 [1]; ;  [2]
  1. Materials Sciences Department, Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)
  2. Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
A comprehensive understanding of radiation effects in zircon, ZrSiO[sub 4], over a broad range of time scales (0.5 h to 570 million years) has been obtained by a study of natural zircon, Pu-doped zircon, and ion-beam irradiated zircon. Radiation damage in zircon results in the simultaneous accumulation of both point defects and amorphous regions. The amorphization process is consistent with models based on the multiple overlap of particle tracks, suggesting that amorphization occurs as a result of a critical defect concentration. The amorphization dose increases with temperature in two stages (below 300 K and above 473 K) and is nearly independent of the damage source ([alpha]-decay events or heavy-ion beams) at 300 K. Recrystallization of completely amorphous zircon occurs above 1300 K and is a two-step process that involves the initial formation of pseudo-cubic ZrO[sub 2].
DOE Contract Number:
AC06-76RL01830; FG03-93ER45498
OSTI ID:
5261664
Journal Information:
Journal of Materials Research; (United States), Journal Name: Journal of Materials Research; (United States) Vol. 9:3; ISSN JMREEE; ISSN 0884-2914
Country of Publication:
United States
Language:
English