Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Kinetic modeling of hardwood prehydrolysis. Part III. Water and dilute acetic acid prehydorlysis of southern red oak

Journal Article · · Wood Fiber; (United States)
OSTI ID:5260430
Most processes for utilizing wood as a source of chemicals and liquid fuels include a prehydrolysis step to remove the hemicellulose prior to the main hydrolysis of the cellulose to glucose. Two promising prehydrolysis methods, the Iotech steam explosion process and the Stake process, are based on water prehydrolysis (autohydrolysis). The kinetics of water and of dilute (5%) acetic acid prehydrolysis of southern red oak wood over the temperature range of 170 to 240 C were investigated. Kinetic parameters were determined that permitted modeling not only of xylan removal from the wood but also of the occurrence of xylan oligosaccharides, free xylose, furfural, and further degradation products in the prehydrolyzate. At lower temperatures (approximately 170 to 200 C), xylan removal could be modeled as the sum of two parallel reactions (one for an easily hydrolyzed portion and one for a more resistant portion of xylan) using the equation derived in Part I. At the highest temperature studied (236.9 C), the removal of xylan from the wood was best modeled as a single reaction with a small fraction of the xylan being essentially nonreactive. The occurrence of xylan oligosaccharides, xylose, furfural, and further degradation products in the prehydrolyzate was modeled as consecutive, irreversible pseudo first-order reactions. A timelag associated with the depolymerization of the xylan oligosaccharides to xylose was accounted for in the model by allowing the apparent rate constant for the formation of xylose to increase exponentially with time to a maximum value.
Research Organization:
Forest Products Lab., Madison, WI
OSTI ID:
5260430
Journal Information:
Wood Fiber; (United States), Journal Name: Wood Fiber; (United States) Vol. 18:2; ISSN WOOFA
Country of Publication:
United States
Language:
English