skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Huebnerite veins near Round Mountain, Nye County, Nevada

Technical Report ·
OSTI ID:5260262

Small huebnerite-bearing quartz veins occur in and near Cretaceous (about 95 m.y. old) granite east and south of Round Mountain. The veins are short, lenticular, and strike mostly northeast and northwest in several narrow east-trending belts. The quartz veins were formed about 80 m.y. ago near the end of an episode of doming and metamorphism of the granite and emplacement of aplite and pegmatite dikes in and near the granite. An initial hydrothermal stage involved deposition of muscovite, quartz, huebnerite, fluorite, and barite in the veins. Veins were then sheared, broken, and recrystallized. A second hydrothermal stage, possibly associated with emplacement of a rhyolite dike swarm and granodiorite stock about 35 m.y. ago, saw deposition of more muscovite, quartz, fluorite, and barite, and addition of scheelite, tetrahedrite-tennantite, several sulfide minerals, and chalcedony. Finally, as a result of near-surface weathering, secondary sulfide and numerous oxide, tungstate, carbonate, sulfate, phosphate, and silicate minerals formed in the veins. Depth of burial at the time of formation of the veins, based on geologic reconstruction, was about 3-3.5 km. The initial hydrothermal stage ended with deposition of quartz at a temperature of about 210/sup 0/C and pressures of about 240 to 280 bars from fluids with salinity of about 5 wt % sodium chloride. Fluorite then was deposited at about 250/sup 0/ to 280/sup 0/C from solutions of similar salinity and containing a small amount of carbon dioxide. During shearing that followed initial mineralization, quartz was recrystallized at a temperature of 270/sup 0/ to 290/sup 0/C and in association with fluids of about 5 wt % sodium chloride equivalent and containing carbon dioxide. Late-stage fluorite was deposited from fluids with similar salinity but devoid of carbon dioxide at a temperature of about 210/sup 0/C. 76 refs., 38 figs., 8 tabs.

Research Organization:
Geological Survey, Washington, DC (USA)
OSTI ID:
5260262
Report Number(s):
USGS-PP-1287; ON: TI85902205
Country of Publication:
United States
Language:
English