Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Asymptotic coverage in random sequential adsorption on a lattice

Journal Article · · Physical Review A. General Physics; (United States)
;  [1]
  1. Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York (USA)
Series expansions for the time-dependent coverage in random sequential adsorption on a lattice are reviewed. A transformation is carried out, resulting in combinatorial expressions in which only nonrepeating lattice walks are required. Convergence is greatly accelerated, and application is made to the asymptotic coverage of previously solved lattices as well as Bethe lattices and cactuses, or Bethe lattices with the bonds replaced by triangles. The method is extended to multisite correlations as well.
OSTI ID:
5242832
Journal Information:
Physical Review A. General Physics; (United States), Journal Name: Physical Review A. General Physics; (United States) Vol. 44:8; ISSN 1050-2947; ISSN PLRAA
Country of Publication:
United States
Language:
English

Similar Records

Use of model solutions in random sequential adsorption on a lattice
Journal Article · Mon Sep 23 00:00:00 EDT 1991 · Physical Review Letters; (United States) · OSTI ID:5243422

Inhomogeneous random sequential adsorption on a lattice
Journal Article · Tue Jun 01 00:00:00 EDT 1993 · Journal of Statistical Physics; (United States) · OSTI ID:5919270

Random walks on the Bethe lattice
Journal Article · Tue Nov 30 23:00:00 EST 1982 · J. Stat. Phys.; (United States) · OSTI ID:6364174