Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Investigation of natural convection in partially divided rectangular enclosures both with and without an opening in the partition plate: Measurement results

Journal Article · · Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States)
DOI:https://doi.org/10.1115/1.2910436· OSTI ID:5233374
; ;  [1]
  1. National Sun Yat-Sen Univ., Kaoshiung (Taiwan)

Experimental results are presented for steady natural convection in a two-dimensional, partially divided, rectangualr enclosure, in which two of the vertical walls were maintained at different uniform temperatures and the top and bottom walls were insulated. The partition plate was adiabatic, and the experiment was carried out both with and without an opening in the partition. Rayleigh numbers ranging from 10{sup 6} to 10{sup 8} and opening ratios of 0, 1/8, and 1/4 were investigated for an enclosure aspect ratio (length/height) of 2 and Prandtl number of 7 (for water). Local velocity and temperature measurements were made with a laser-Doppler velocimeter and thermocouple probes. Flow visualization using colored dye was also performed. Results show that there was a recirculation zone in the upper and left quadrant of the enclosure when there was no opening in the partition plate. With an opening in the partition, the recirculation zone was absent and the heat transfer rate increased. An unopened partial obstruction would reduce the heat transfer rate by an amount of 12 to 30% depending on the Rayleigh number. However, the opening seems to have little effect on the velocity and temperature profiles of the left-moving fluid on the bottom wall. A correlation of the Nusselt number is derived, which shows that the heat transfer rate increases as the Rayleigh number or opening ratio increases.

OSTI ID:
5233374
Journal Information:
Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States), Journal Name: Journal of Heat Transfer (Transactions of the ASME (American Society of Mechanical Engineers), Series C); (United States) Vol. 112:3; ISSN 0022-1481; ISSN JHTRA
Country of Publication:
United States
Language:
English