Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Synthesis of phosphatidylcholines in ozone-exposed alveolar type II cells isolated from adult rat lung: is glycerolphosphate acyltransferase a rate-limiting enzyme

Journal Article · · Exp. Lung Res.; (United States)

Type II cells were exposed to ozone by gas diffusion through the thin Teflon bottom of culture dishes. The rate of phosphatidylcholine synthesis by type II cells, monitored by the incorporation of (Me-/sup 14/C)choline, was impaired by ozone at concentrations that did not affect other cellular parameters. The enzymes choline kinase and cholinephosphate cytidylyltransferase were not susceptible to inactivation by ozone at concentrations at which the activity of glycerolphosphate acyltransferase was decreased. The enzyme activity of lactate dehydrogenase increased after ozone exposure. The specific activity of choline kinase in the cytosolic fraction of type II cells was fivefold that in whole lung. The metabolism of (Me-/sup 14/C)choline was studied as a function of the choline concentration. Maximal rates of phosphatidylcholine synthesis were already attained at a concentration of 20 microM choline. Exposure of type II cells to ozone did not affect the recovery of label from (Me-/sup 14/C)choline in choline phosphate and CDP choline. However, the maximal rate of phosphatidylcholine synthesis decreased after ozone exposure, which indicates that the decreased apparent activity of glycerolphosphate acyltransferase limits the supply of diacylglycerols and thereby the rate of phosphatidylcholine synthesis. If the flux through the diacylglycerol pathway was stimulated by the addition of palmitic acid, a higher maximal rate of phosphatidylcholine synthesis was observed. The uptake of (Me-/sup 14/C)choline and the recovery of label in CDPcholine were not altered by the addition of different concentrations of palmitate. It is concluded that type II cells take up choline very efficiently, probably due to the high specific activity of choline kinase. At low choline concentrations the rate of phosphatidylcholine synthesis is determined by the supply of CDPcholine.

Research Organization:
Utrecht Univ. (Netherlands)
OSTI ID:
5230985
Journal Information:
Exp. Lung Res.; (United States), Journal Name: Exp. Lung Res.; (United States) Vol. 14:1; ISSN EXLRD
Country of Publication:
United States
Language:
English