Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Task II: evaluation of heat-exchanger and turbine materials for use in a coal-fired fluidized-bed-combustion environment. Final report, July 1, 1976-July 31, 1980

Technical Report ·
OSTI ID:5228261

Specific alloys were tested as in-bed and above-bed heat exchanger materials in the fireside environment of a pressurized fluidized bed coal combustor (PFBCC). Corrosion conditions on the alloys exposed to normal and very low oxygen pressures in the presence of calcium sulfate deposits were simulated. Bayonet-type specimen probes of selected alloys were exposed in the Exxon Miniplant at probe control temperatures representative of conventional steam, advanced steam, helium and liquid metal energy conversion cycles. Corrosion/erosion testing of the air cooled, welded samples consisted of a 117-hour shakedown run followed by an incremental 1000-hour exposure. Metallurgical analyses were run on removed specimens. The test matrix for in-bed and above-bed exposure was: 1050/sup 0/F (566/sup 0/C): 2.25 Cr-1Mo and 9Cr-1Mo steels (in-bed only); 1200/sup 0/F (649/sup 0/C): 304 SS and Incoloy-800; 1400/sup 0/F (760/sup 0/C): Incoloy-800 and Hastelloy-X; and 1600/sup 0/F (871/sup 0/C); Hastelloy-X and Haynes-188. Subscale sulfides formed in most of the alloys. The most severe corrosion was noted in the ferritic 2.25Cr-1Mo and 9Cr-1Mo steels at a nominal control temperature of 1050/sup 0/F (566/sup 0/C) and in Hastelloy-X at 1400/sup 0/F (760/sup 0/C) exposed in-bed. The best overall behavior of in-bed alloys was observed for Incoloy-800, which had a maximum metal loss of about .007 in (.18 mm) in 1117 hours of exposure at both 1200/sup 0/F (649/sup 0/C) and 1400/sup 0/F (760/sup 0/C) but averaged more nearly .001 in (.025 mm) to .002 in (.051 mm) and in Haynes-188 which showed maximum wall thinning of less than .003 in (.076 mm) at 1600/sup 0/F (871/sup 0/C) in the longest time exposure.

Research Organization:
Westinghouse Research and Development Center, Pittsburgh, PA (USA)
DOE Contract Number:
AC01-76ET10687
OSTI ID:
5228261
Report Number(s):
DOE/ET/10687-T1; ON: DE82014358
Country of Publication:
United States
Language:
English