Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A study of the terrestrial thermosphere by remote sensing of OI dayglow in the far and extreme ultraviolet

Thesis/Dissertation ·
OSTI ID:5225912
The upper region of the Earth's atmosphere, the thermosphere, is a key part of the coupled solar-terrestrial system. An important method of obtaining information in the this region is through analysis of radiation excited through the interactions of the thermosphere with solar ionizing, extreme and far ultraviolet radiation. This dissertation presents one such study by the remote sensing of OI in the far and extreme ultraviolet dayglow. The research program included the development construction, and flight of a sounding rocket spectrometer to test this current understanding of the excitation and transport mechanisms of the OI 1356, 1304, 1027, and 989 {angstrom} emissions. This data set was analyzed using current electron and radiative transport models with the purpose of checking the viability of OI remote sensing; that is, whether existing models and input parameters are adequate to predict these detailed measurements. From discrepancies between modeled and measured emissions, inferences about these input parameters were made. Among other things, the data supports a 40% optically thick cascade contribution to the 1304 {angstrom} emission. From upper lying states corresponding to 1040, 1027 and 989 {angstrom} about half of this cascade has been accounted for in this study. There is also evidence that the Lyman {beta} airglow from the geo-corona contributes a significant proportion (30-50%) to the OI 1027 {angstrom} feature. Furthermore, the photoelectron contribution to the 1027 {angstrom} feature appears to be underestimated in the current models by a factor of 20.
Research Organization:
California Univ., Berkeley, CA (United States)
OSTI ID:
5225912
Country of Publication:
United States
Language:
English