Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Characterization of the coal biosolubilization process using gel permeation chromatography and CPMAS NMR

Conference ·
OSTI ID:5215715

Leonardite, an oxidized lignite, and Illinois {number sign}6 coal were treated with Trametes versicolor and Penicillium sp., respectively, and separately with aqueous base to yield soluble and insoluble products. The products and starting materials were analyzed by gel permeation chromatography (GPC), using both aqueous and organic eluents, and by high-field, high-speed-pinning (>10.0 kHz) {sup 13}C cross polarization/magic angle spinning (CPMAS) nuclear magnetic resonance spectroscopy (NMR). The weight average molecular weights (M{sub w}) of the fungal-and base-solubilized products determined by GPC using acidic tetrahydrofuran (THF) eluent were found to be consistently lower than the M{sub w} determined using basic aqueous eluents. The M{sub w} of the leonardite product was measured to be 1800 and 6100 daltons using the THF and aqueous eluents, respectively. The aqueous eluent (phosphate buffered at pH 11.5) was found to be superior to the THF eluent in its solubilizing power, with 10% more material analyzed with the basic eluent. The solubility of the biotreated products in aqueous base was greater than either the starting coal or the chemically solubilized product. The Trametes-solubilized leonardite was found to contain a higher percentage of aliphatic carbon than the raw lignite; the Penicillium- solubilized Illinois {number sign}6 contained more aromatic carbon than before fungal treatment as determined by {sup 13}C CPMAS NMR. Pre-oxidation of Illinois {number sign}6 decreases the relative amount of aliphatic carbon. The high-field, high-speed-spinning CPMAS NMR technique was quantitatively evaluated using Argonne premium coals,International Humic Society Standards, and model compounds at various temperatures. 7 refs., 4 figs., 3 tabs.

Research Organization:
Pacific Northwest Lab., Richland, WA (United States)
Sponsoring Organization:
DOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC06-76RL01830
OSTI ID:
5215715
Report Number(s):
PNL-SA-17644; CONF-900531--7; ON: DE92000798
Country of Publication:
United States
Language:
English