Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Methanol and methane formation over palladium dispersed on the lanthanide rare earth oxides

Journal Article · · J. Catal.; (United States)
To complete their study of the effect of the rare earth oxide (REO) support on the CO hydrogenation reaction over Pd, this metal was dispersed on the oxides of the late lanthanide elements - Tb through Lu. The Pd surface area was measured before and after kinetic runs at 0.1 MPa (1 atm) and 1.5 MPa with these Pd/REO catalysts. Methanation activation energies were 30.4 +/- 1.1 kcal/mole. The turnover frequency (TOF) at 548 K for methane ranged from 1.2 x 10/sup -3/ to 4.8 x 10/sup -3/ s/sup -1/, which is up to 40 times that on Pd powder. The average activation energy for methanol synthesis was 19.6 +/- 0.8 kcal/mole, and TOFs varied from 1.6 x 10/sup -3/ to 6.1 x 10/sup -3/ s/sup -1/. When these results are combined, the patterns for methanation at 0.1 MPa and CH/sub 3/OH synthesis at 1.5 MPa are established as a function of the position of the REO in the periodic table. There is a clear influence of the support on catalytic properties. No trend occurs between methanation activity and the acidity of the support, but a correlation exists between the CH/sub 4/ TOF and the activation energy for electrical conductivity. The TOF for CH/sub 3/OH synthesis shows a strong correlation with the basicity of the REO, which varies with the lanthanide contraction. This behavior also indicated that the support participates directly in the reaction sequence, and this trend strongly supports a mechanism involving formate species on the REO surface, which are formed most readily on the most basic oxides, such as La/sub 2/O/sub 3/. The possibility of a heterogeneous analog of the Cannizzaro reaction is pointed out, and this route may also influence methanol formation.
Research Organization:
Pennsylvania State Univ., University Park (USA)
OSTI ID:
5206196
Journal Information:
J. Catal.; (United States), Journal Name: J. Catal.; (United States) Vol. 108:1; ISSN JCTLA
Country of Publication:
United States
Language:
English