skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sulfidation of Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts studied by Moessbauer emission spectroscopy

Journal Article · · Journal of Catalysis; (United States)
;  [1];  [2];  [3]
  1. Delft Univ. of Technology (Netherlands)
  2. Eindhoven Univ. of Technology (Netherlands)
  3. Koninklijke/Shell-Laboratorium, Badhuisweg (Netherlands)

The structure of hydrodesulfurization catalysts is relevant to many industries. The sulfidation of uncalcined and calcined alumina-supported cobalt and cobalt-molybdenum catalysts was systematically studied by means of in situ Moessbauer emission spectroscopy (MES) at room temperature. The spectra obtained during the stepwise sulfidation of the uncalcined catalysts clearly resemble those observed for carbon-supported ones. Hence, the interpretation of the spectra of the alumina-supported catalysts is based on the conclusions drawn from the MES studies of the carbon-supported catalysts, which are less complex because Co ions do not diffuse into the support. It is demonstrated that not only in sulfided CoMo/Al[sub 2]O[sub 3], but also in sulfided Co/Al[sub 2]O[sub 3], catalysts Co-sulfide species with a [open quotes]Co-Mo-S[close quotes]-type quadrupole splitting can be formed. It is concluded that the Co-sulfide species formed in sulfided Co/Al[sub 2]O[sub 3] and CoMo/Al[sub 2]O[sub 3] catalysts are essentially the same, only the particle size and ordering of the Co-sulfide species may differ, as in the case of Co/C and CoMo/C catalysts. The function of the Mo, which is present as MoS[sub 2], is merely to stabilize very small Co-sulfide particles, which in the limit contain only one single Co atom. Furthermore, it turns out that the value of the electric quadrupole splitting (Q.S. value) of the Co-sulfide phase in the sulfided catalysts depends on the sulfiding temperature and Co content. This observation leads to the conclusion that large Q.S. values point to the presence of very small Co-sulfide entities or particles (the lower limit being [open quotes]particles[close quotes] containing only one Co atom, such as proposed in the [open quotes]Co-Mo-S[close quotes] model), whereas small Q.S. values point to the presence of large Co-sulfide particles (the upper limit being crystalline Co[sub 9]S[sub 8]). 28 refs., 7 figs., 6 tabs.

OSTI ID:
5183825
Journal Information:
Journal of Catalysis; (United States), Vol. 143:2; ISSN 0021-9517
Country of Publication:
United States
Language:
English