Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A chaotic system for the generation of extreme mechanical environments

Conference ·
OSTI ID:5168681

A proposed system and technique for generating high frequency, high amplitude vibration environments is presented. These environments are created using a device attached to a common vibration exciter that permits multiple metal on metal impacts driving a test surface. Previous analytical studies (Refs. 1 and 2) predicted that test environments with an energy content exceeding 10 kHx could be achieved using sinusoidal and random shaker excitations. The analysis predicted that chaotic vibrations yielding random-like test environments could be generated from sinusoidal inputs. In this study, a much simplified version of the proposed system was fabricated and tested in the laboratory. Experimental measurements demonstrate that even this simplified system, utilizing a single impacting object, can generate environments on the test surface with significant frequency content in excess of 80 kHz. A theoretical model of the system is described and the results are compared with the experimental results for the simplified system. 5 refs., 8 figs.

Research Organization:
Sandia National Labs., Albuquerque, NM (United States)
Sponsoring Organization:
DOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC04-76DP00789
OSTI ID:
5168681
Report Number(s):
SAND-91-0491C; CONF-911241--3; ON: DE91018358
Country of Publication:
United States
Language:
English