Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Global gauge anomalies for simple Lie algebras

Journal Article · · Phys. Rev. D; (United States)
We generalize the formula by Elitzur and Nair on the global-anomaly coefficients in even (D = 2n)-dimensional space and analyze global anomalies for Sp(2N), SO(N), and SU(N) groups. In particular, we show that any irreducible representation of any Sp(N) and SU(2) group has no global anomalies in D = 8k dimensions. In D = 8k+4 dimensions, SU(2) has Z/sub 2/-type global anomalies only if the spin J of an irreducible representation has the form J = (12(1+4l) = 1)2, (52,9)2,... For any SU(N) group in D = 2n, the global-anomaly coefficients can be expressed in terms of so-called unstable James numbers of Stiefel manifold SU(n+1)SU(n-k) and generalized Dynkin indices Q/sub n/..mu../sub 1/(..omega..) for SU(n+1)
Research Organization:
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
OSTI ID:
5159787
Journal Information:
Phys. Rev. D; (United States), Journal Name: Phys. Rev. D; (United States) Vol. 37:10; ISSN PRVDA
Country of Publication:
United States
Language:
English

Similar Records

Global aspects of gauge anomalies
Thesis/Dissertation · Thu Dec 31 23:00:00 EST 1987 · OSTI ID:6897244

Global anomalies and algebraic topology
Journal Article · Mon Aug 01 00:00:00 EDT 1988 · J. Math. Phys. (N.Y.); (United States) · OSTI ID:7056737

SU(N) global gauge anomalies in even dimensions
Journal Article · Mon Mar 14 23:00:00 EST 1988 · Phys. Rev. D; (United States) · OSTI ID:5422641