skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Exploratory study of coal-conversion chemistry. Quarterly report No. 4, February 19-May 18, 1982

Technical Report ·
OSTI ID:5127502

SRI is conducting a program on the chemistry of the conversion of coal to liquid fuels: Task A deals with mechanisms of donor solvent liquefaction; Task B is a study of the conversion of coal and model compounds in the CO/H/sub 2/O system. In Task A, determination of the products, rates, and mechanisms of central bond scission of diphenyl ether and 1,2-dinaphthylmethane in tetralin, 9,10-dihydroanthracene, and 9,10-dihydrophenanthrene allows us to determine the predominant mechanism of hydrogen transfer to these substrates. Diphenyl ether decomposes in the above three solvents by a radical addition-elimination mechanism, with defined first-order rate constants of approx. 1 x 10/sup -7/, 2 x 10/sup -6/, and 2 x 10/sup -7/ s/sup -1/, respectively. The relative reactivity of the two substrates, the relative reactivity in the three solvents, and the positional preference for hydrogen transfer provide compelling evidence for the previously unreported single-step transfer of hydrogen from a radical to a closed-shell ..pi..-system. Efforts in Task B were concentrated on the conversion of anisole in D/sub 2/O and in tetralin at 400/sup 0/C. Experiments were conducted in two different reactor systems, small glass ampoules and 1/4-in. 316 stainless steel tubes. Benzene and phenol were the major products with the rates of product formation affected by the reaction medium and the reactor walls. The rate of benzene formation was found to be more rapid in D/sub 2/O than tetralin, and somewhat greater in glass ampoules than in stainless steel reactors for 20 min. We also studied the conversion of bibenzyl in D/sub 2/O and in tetralin in stainless steel tubes at 400/sup 0/C. In tetralin, toluene was the major product. In D/sub 2/O, the products were toluene, benzene, diphenylmethane, stilbene, and phenanthrene. A novel hydration scheme is suggested for the reactions of bibenzyl in water.

Research Organization:
SRI International, Menlo Park, CA (USA)
DOE Contract Number:
AC22-81PC40785
OSTI ID:
5127502
Report Number(s):
DOE/PC/40785-4; ON: DE82020736
Country of Publication:
United States
Language:
English