Precision Ginzburg-Landau Solution of Ideal Vortex Lattices for Any Induction and Symmetry
- Max Planck Institute fuer Metallforschung, Institut fuer Physik, D-70506 Stuttgart (Germany)
A method is presented that solves the Ginzburg-Landau equations for the ideal Abrikosov vortex lattice in type-II superconductors with high precision for arbitrary induction, Ginzburg-Landau parameter, and vortex lattice symmetry. This iteration procedure excels previous one-dimensional circular cell methods and approximate variational methods, and is easily adapted to anisotropic and unconventional superconductors. Selected results are given for the order parameter, the form factors of the periodic magnetic field measurable by neutron scattering, reversible magnetization curves, and the shear modulus of the vortex lattice, which could not be obtained by previous methods. {copyright} {ital 1997} {ital The American Physical Society}
- OSTI ID:
- 512726
- Journal Information:
- Physical Review Letters, Journal Name: Physical Review Letters Journal Issue: 11 Vol. 78; ISSN 0031-9007; ISSN PRLTAO
- Country of Publication:
- United States
- Language:
- English
Similar Records
Simple Ginzburg-Landau Theory for Vortices in a Crystal Lattice
Solving the Ginzburg-Landau equations by simulated annealing