skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Odor modeling methodology for determining the odor buffer distance for sanitary landfills

Miscellaneous ·
OSTI ID:5124278

The objective of this study is to create a methodology whereby reductions in off-site odor migrations resulting from operational and design changes in new or expanded sanitary landfills can be evaluated. The Ann Arbor Sanitary Landfill was chosen as a prototype landfill to test a hypothesis for this study. This study is a unique approach to odor prediction at sanitary landfills using surface flux measurements, odor threshold panel measurements, and dispersion modeling. Flux measurements were made at open tipping face, temporary cover, final cover, vents, and composting zones of the Ann Arbor Sanitary Landfill. Surface gas velocities and in-ground concentrations were determined to allow a quantification of the total and methane gas flow rate. Odor threshold panel measurements were performed to determine the odor intensity in odor units at the corresponding sites. The used the flux and odor panel measurements in the Industrial Source Complex Terrain Model to determine the hourly averaged highest and second highest odor levels at 175 receptors placed at the property boundary and 25 nearby residential locations. Using measured values for velocity, subsurface CH{sub 4} concentration and odor intensity, it was determined that the proposed 1990 operations with a buffer distance of 600 feet provided at least a factor of five protection below 1 o.u. of the odor threshold for all receptors, and dilution protection equal to the historic 1984 operations with a 1,200 feet isolation distance.

Research Organization:
Wayne State Univ., Detroit, MI (United States)
OSTI ID:
5124278
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English