skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Attempted integration of geologic and geophysical data from the Idaho National Engineering Laboratory area, Eastern Snake River Plain

Conference · · Geological Society of America, Abstracts with Programs; (United States)
OSTI ID:5095550
; ;  [1]
  1. EG G Idaho, Inc., Idaho Falls, ID (United States). Idaho National Engineering Lab.

The Eastern Snake River Plain (ESRP) is a late-Cenozoic, bimodal volcanic province that developed synchronously with basin-and-range extension in the surrounding tectonic province. Strong geologic and geophysical contrasts exist between these two provinces. The Basin and Range is composed of northwest-trending, carbonate-bedrock ranges and alluvium-filled valleys. The ESRP is a bimodal volcanic province, with Tertiary silicic-volcanic rocks overlain by Quaternary mafic lavas. Patterns of ESRP volcanism and associated dike-induced surface deformation suggest that Quaternary crustal extension on the ESRP is accommodated by intrusion of basaltic dikes along northwest-trending volcanic-rift zones. This contrasts with recurrent seismogenic slip along northwest-trending, segmented normal faults in the adjacent Basin and Range tectonic province. The authors present new geophysical compilations, and they attempt to correlate these data with the surface distribution of volcanic-rift zones and other mapped geologic features near the Idaho National Engineering Laboratory. Numerous, northwest-trending aeromagnetic anomalies do not always correspond with mapped volcanic-rift zones, which are expected to be underlain by mafic-dike swarms. Northwest-trending gravity anomalies also cross the ESRP, but their widths suggest broadly distributed masses rather than narrow rift zones. The spatial and temporal distribution of volcanic-rift zones on the ESRP has important implications for regional tectonics and seismicity, as well as the assessment of seismic- and volcanic hazards at the Idaho National Engineering Laboratory. Discrepancies among the data sets suggest that older, buried volcanic-rift zones may have existed in a different configuration than is currently indicated by surficial geology. Alternatively, the geophysical signatures of non-rift-zone features may be indistinguishable from those of volcanic-rift zones.

OSTI ID:
5095550
Report Number(s):
CONF-9305259-; CODEN: GAAPBC
Journal Information:
Geological Society of America, Abstracts with Programs; (United States), Vol. 25:5; Conference: 89. annual meeting of the Cordilleran Section and the 46th annual meeting of the Rocky Mountain Section of the Geological Society of America (GSA), Reno, NV (United States), 19-21 May 1993; ISSN 0016-7592
Country of Publication:
United States
Language:
English