skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical evaluation of thermal imaging for detection of erosive wear of internally refractory-lined transfer lines

Technical Report ·
DOI:https://doi.org/10.2172/5091092· OSTI ID:5091092

Infrared scanning has potential use in detecting erosive wear (thickness change) of the refractory surface of large-diameter steel pipes internally lined with refractory concrete, which are typical of those used in coal-conversion processes. An analytical study was conducted to determine the viability of this method. Heat-transfer models were developed to predict surface-temperature distributions on the outer metal surface for various erosive-wear conditions on the inner surface, assuming uniform inner-surface temperature. Variables investigated included thermal conductivity of the refractory concrete, thermal contact resistance between the steel shell and the refractory, outer-surface convective coefficient, outer-surface radiative properties, and refractory-lining thickness and composition. The study used two- and three-dimensional heat-transfer models and various well-defined rectangular cavities on the inner surface. Temperature resolution, and thus calculation of cavity sizes from surface-temperature profiles, is better when the convective coefficient is small and the interfacial contact resistance is uniformly low. The presence of dual refractory-concrete liners using a layer of insulating concrete between the hot-face lining and the steel shell, together with thick steel (t > 25 mm), tends to smear temperature patterns and reduce the temperature gradient so that calculation of cavity shapes becomes impractical. 44 figures, 15 tables.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
5091092
Report Number(s):
ANL-78-82
Country of Publication:
United States
Language:
English