skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Heat transfer and turbulence in a turbulated blade cooling circuit

Conference · · Journal of Turbomachinery; (United States)
OSTI ID:5068402
 [1];  [2]
  1. General Electric Co., Schenectady, NY (United States)
  2. GE Aircraft Engines, Lynn, MA (United States)

The aerothermal performance of a typical turbine blade three-pass turbulated cooling circuit geometry was investigated in a 10X plexiglass test model. The model closely duplicated the blade's leading edge, midchord, and trailing edge cooling passage geometries. Steady-state heat transfer coefficient distributions along the blade pressure side wall (convex surface) of the cooling circuit passages were measured with a thin-foil heater and a liquid crystal temperature sensor assembly. The heat transfer experiments were conducted on rib-roughened channels with staggered turbulators along the convex and concave surfaces of the cooling passages. Midchannel axial velocity and turbulence intensity measurements were taken by hot-wire anemometry at each passage end of the three-pass cooling circuit to characterize and relate the experimental data are compared with results of a Computational Fluid Dynamics (CFD) analysis at the operating internal environment for a 1X rotating model of the blade cooling circuit and other turbulator channel geometry heat transfer data investigations. The comparison between the measurements and analysis is encouraging. Differences with other heat transfer data appear reasonably understood and explainable.

OSTI ID:
5068402
Report Number(s):
CONF-920602-; CODEN: JOTUEI
Journal Information:
Journal of Turbomachinery; (United States), Vol. 116:1; Conference: 37. international gas turbine and aeroengine congress and exposition - ASME turbo expo: land, sea, and air, Cologne (Germany), 1-4 Jun 1992; ISSN 0889-504X
Country of Publication:
United States
Language:
English