Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Increases in CO/sub 2/ and chlorofluoromethanes: coupled effects on stratospheric ozone

Conference ·
OSTI ID:5046084
The magnitude of the chlorofluoromethane (CFM) induced depletion of the ozone layer is considered a key problem in atmospheric research. The historical rise in the atmospheric concentrations of CFCl/sub 3/, and CF/sub 2/Cl/sub 2/, the major CFM species, is well documented. Atmospheric CO/sub 2/ has also been increasing. Instead of depleting O/sub 3/, the expected effect of CO/sub 2/ is to increase its concentration. The simultaneous effects of these perturbations were studied. Results indicate that increases in CO/sub 2/ can significantly alter the predicted ozone trend. This will complicate efforts to detect the trend in O/sub 3/ caused by increases in CFM's. Since the calculated effects of these perturbations are largest at high altitudes, one might expect to detect changes in high altitude O/sub 3/ sooner than those in total O/sub 3/. Therefore a comparison was made between the calculated change in O/sub 3/ at high altitude and statistical detection limits for abnormal change as developed from Umkehr data from Arosa, Switzerland. Its significance for trend detection is discussed. Finally, since CO/sub 2/ effects will be important in the next 50 to 100 years, the effects of temperature changes from CO/sub 2/ increase on O/sub 3/ loss rates from different families were examined. Significant changes in the NO/sub x/-catalyzed ozone loss rates that have not previously been discussed were found. It is concluded that the O/sub 3/ decrease at steady state from the coupled CFM and CO/sub 2/ perturbation is larger than the decrease calculated by summing the separate effects of these perturbations. The expected increase in CO/sub 2/ can significantly affect predicted O/sub 3/ trends in the next 50 to 100 years. O/sub 3/ changes in Umkehr level 7 are more detectible, in a statistical sense, than those at higher levels. The temperature effect of CO/sub 2/ on the NO/sub x-catalyzed O/sub 3/ destruction rate was found to be as large or larger than the effect of temperature on the pure oxygen loss rate.
Research Organization:
California Univ., Livermore (USA). Lawrence Livermore Lab.
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
5046084
Report Number(s):
UCRL-84058; CONF-800869-1
Country of Publication:
United States
Language:
English