skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide

Abstract

Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.

Authors:
;
Publication Date:
Research Org.:
George Washington Univ. School of Medicine and Health Sciences, Washington, DC
OSTI Identifier:
5021554
Resource Type:
Journal Article
Resource Relation:
Journal Name: Peptides (Fayetteville, N.Y.); (United States); Journal Volume: 2
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; BRAIN; AUTORADIOGRAPHY; PEPTIDES; RADIORECEPTOR ASSAY; IODINE 125; LABELLED COMPOUNDS; RATS; RECEPTORS; SECRETIN; ANIMALS; BETA DECAY RADIOISOTOPES; BODY; CENTRAL NERVOUS SYSTEM; DAYS LIVING RADIOISOTOPES; ELECTRON CAPTURE RADIOISOTOPES; HORMONES; INTERMEDIATE MASS NUCLEI; IODINE ISOTOPES; ISOTOPE APPLICATIONS; ISOTOPES; MAMMALS; MEMBRANE PROTEINS; NERVOUS SYSTEM; NUCLEI; ODD-EVEN NUCLEI; ORGANIC COMPOUNDS; ORGANS; PROTEINS; RADIOISOTOPES; RODENTS; TRACER TECHNIQUES; VERTEBRATES; 550201* - Biochemistry- Tracer Techniques

Citation Formats

Shaffer, M.M., and Moody, T.W.. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide. United States: N. p., 1986. Web. doi:10.1016/0196-9781(86)90226-3.
Shaffer, M.M., & Moody, T.W.. Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide. United States. doi:10.1016/0196-9781(86)90226-3.
Shaffer, M.M., and Moody, T.W.. 1986. "Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide". United States. doi:10.1016/0196-9781(86)90226-3.
@article{osti_5021554,
title = {Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide},
author = {Shaffer, M.M. and Moody, T.W.},
abstractNote = {Receptors for VIP were characterized in the rat CNS. /sup 125/I-VIP bound with high affinity to rat brain slices. Binding was time dependent and specific. Pharmacology studies indicated that specific /sup 125/I-VIP binding was inhibited with high affinity by VIP and low affinity by secretin and PHI. Using in vitro autoradiographic techniques high grain densities were present in the dentate gyrus, pineal gland, supraoptic and suprachiasmatic nuclei, superficial gray layer of the superior colliculus and the area postrema. Moderate grain densities were present in the olfactory bulb and tubercle, cerebral cortex, nucleus accumbens, caudate putamen, interstitial nucleus of the stria terminalis, paraventricular thalamic nucleus, medial amygdaloid nucleus, subiculum and the medial geniculate nucleus. Grains were absent in the corpus callosum and controls treated with 1 microM unlabeled VIP. The discrete regional distribution of VIP receptors suggest that it may function as an important modulator of neural activity in the CNS.},
doi = {10.1016/0196-9781(86)90226-3},
journal = {Peptides (Fayetteville, N.Y.); (United States)},
number = ,
volume = 2,
place = {United States},
year = 1986,
month = 3
}
  • The distribution of vasoactive intestinal peptide (VIP) binding sites in the pigeon brain was examined by in vitro autoradiography on slide-mounted sections. A fully characterized monoiodinated form of VIP, which maintains the biological activity of the native peptide, was used throughout this study. The highest densities of binding sites were observed in the hyperstriatum dorsale, archistriatum, auditory field L of neostriatum, area corticoidea dorsolateralis and temporo-parieto-occipitalis, area parahippocampalis, tectum opticum, nucleus dorsomedialis anterior thalami, and in the periventricular area of the hypothalamus. Lower densities of specific binding occurred in the neostriatum, hyperstriatum ventrale and nucleus septi lateralis, dorsolateral area ofmore » the thalamus, and lateral and posteromedial hypothalamus. Very low to background levels of VIP binding were detected in the ectostriatum, paleostriatum primitivum, paleostriatum augmentatum, lobus parolfactorius, nucleus accumbens, most of the brainstem, and the cerebellum. The distribution of VIP-containing fibers and terminals was examined by indirect immunofluorescence using a polyclonal antibody against porcine VIP. Fibers and terminals were observed in the area corticoidea dorsolateralis, area parahippocampalis, hippocampus, hyperstriatum accessorium, hyperstriatum dorsale, archistriatum, tuberculum olfactorium, nuclei dorsolateralis and dorsomedialis of the thalamus, and throughout the hypothalamus and the median eminence. Long projecting fibers were visualized in the tractus septohippocampalis. In the brainstem VIP immunoreactive fibers and terminals were observed mainly in the substantia grisea centralis, fasciculus longitudinalis medialis, lemniscus lateralis, and in the area surrounding the nuclei of the 7th, 9th, and 10th cranial nerves.« less
  • Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples.
  • This paper describes the autoradiographic distribution of VIP binding sites in the rat central nervous system using monoiodinated 125I-labeled VIP. High densities of VIP binding sites are observed in the granular layer of the dorsal dentate gyrus of the hippocampus, the basolateral amygdaloid nucleus, the dorsolateral and median geniculate nuclei of the thalamus as well as in the ventral part of the hypothalamic dorsomedial nucleus.
  • Vasoactive intestinal peptide (VIP) has been implicated as a physiological PRL-releasing factor; however, characterization of VIP receptors on normal pituitaries using radioligand-binding methods has been problematic. In this study we demonstrated specific receptors for VIP in anterior pituitary glands of female rats using HPLC-purified monoiodinated (Tyr(125I)10)VIP. Binding of VIP was reversible, saturable to receptor and radioligand, regulated by guanine nucleotides, and dependent on time and temperature. Scatchard analysis of competitive binding studies indicated high and low affinity binding sites, with equilibrium dissociation constants (Kd) of 0.19 +/- 0.03 and 28 +/- 16 nM, respectively. The corresponding maximum numbers of bindingmore » sites were 158 +/- 34 fmol/mg and 11.7 +/- 6.9 pmol/mg. Binding was specific, as peptides with structural homology to VIP were less than 100th as potent as VIP. The rank order of potency of the peptides tested was VIP greater than rat (r) peptide histidine isoleucine = human (h) PHI greater than rGRF greater than bovine GRF = porcine PHI = VIP-(10-28) greater than hGRF greater than secretin greater than apamin greater than glucagon. Radioligand binding was associated primarily with lactotrope-enriched fractions prepared by unit gravity sedimentation of dispersed anterior pituitary cells. VIP stimulated PRL release from cultured rat anterior pituitary cells, with an ED50 of 1 nM. These results, comprising the first identification of specific VIP receptors in normal rat anterior pituitary tissue using radioligand-binding methods, provide additional support for a biological role of VIP in lactotrope function.« less
  • Vasoactive intestinal peptide (VIP) is a widely distributed neurotransmitter whose dilatory effects on vascular smooth muscle are believed to be mediated via specific receptors. To determine the possible role of VIP in regulating specific vascular beds, we examined the relationship between arterial wall VIP content as determined by radioimmunoassay and VIP receptors mapped by autoradiography. Analysis of arteries from 12 adult New Zealand rabbits showed that VIP receptors were consistently located in the wall of all muscular arteries, and that the {sup 125}I-VIP grain density correlated with VIP content. {sup 125}I-VIP binding in the mesenteric, renal, and iliac arteries wasmore » abundant and their VIP content was 192 +/- 56, 51 +/- 5, and 74 +/- 23 fmole/mg protein, respectively. {sup 125}I-VIP binding to the thoracic aorta was indistinguishable from nonspecific binding, its VIP content being 15 +/- 2 fmole/mg protein. The abundance of VIP receptors and the high VIP levels associated with the mesenteric, renal, and iliac arteries suggest that VIP is a potential regulator of flow to the vascular beds supplied by these arteries. In contrast, the much lower density of receptors in the extracranial carotid, which is also a muscular artery, suggests that, in rabbits, control of carotid vasomotion may be less dependent on VIP innervation. Furthermore, these results suggest that VIP receptors and VIP-containing neurons are not uniformly distributed in the arterial vasculature and that VIP may have selective vasodilatory effects.« less