Universal R matrices and invariants of quantum supergroups
Journal Article
·
· Journal of Mathematical Physics (New York); (United States)
- Department of Mathematics, University of Queensland, Brisbane, Qld. 4072 (Australia)
A general method is developed for constructing invariants of quantum supergroups using universal {ital R} matrices. Applied to {ital U}{sub {ital q}}(gl(2/1)), this method yields the invariants of this quantum supergroup in explicit form. The eigenvalues of these invariants in arbitrary irreducible highest weight representations are computed.
- OSTI ID:
- 5019795
- Journal Information:
- Journal of Mathematical Physics (New York); (United States), Journal Name: Journal of Mathematical Physics (New York); (United States) Vol. 32:12; ISSN 0022-2488; ISSN JMAPA
- Country of Publication:
- United States
- Language:
- English
Similar Records
Bott{endash}Borel{endash}Weil construction for quantum supergroup U{sub q}(gl(m{vert_bar}n))
Eigenvalues of Casimir invariants for U{sub q}[osp(m vertical bar n)]
Quantum supergroups and solutions of the Yang-Baxter equation
Journal Article
·
Tue Jul 01 00:00:00 EDT 1997
· Journal of Mathematical Physics
·
OSTI ID:530090
Eigenvalues of Casimir invariants for U{sub q}[osp(m vertical bar n)]
Journal Article
·
Wed Dec 14 23:00:00 EST 2005
· Journal of Mathematical Physics
·
OSTI ID:20768696
Quantum supergroups and solutions of the Yang-Baxter equation
Journal Article
·
Thu May 10 00:00:00 EDT 1990
· Modern Physics Letters A; (USA)
·
OSTI ID:6546347
Related Subjects
657002* -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
CONFORMAL GROUPS
EIGENVALUES
GROUP THEORY
IRREDUCIBLE REPRESENTATIONS
LIE GROUPS
MATHEMATICS
MATRICES
MECHANICS
QUANTUM MECHANICS
SUPERSYMMETRY
SYMMETRY
SYMMETRY GROUPS
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
CONFORMAL GROUPS
EIGENVALUES
GROUP THEORY
IRREDUCIBLE REPRESENTATIONS
LIE GROUPS
MATHEMATICS
MATRICES
MECHANICS
QUANTUM MECHANICS
SUPERSYMMETRY
SYMMETRY
SYMMETRY GROUPS