skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular dynamics modeling of clay minerals. 1. Gibbsite, kaolinite, pyrophyllite, and beidellite

Journal Article · · Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical
DOI:https://doi.org/10.1021/jp961577z· OSTI ID:501902
;  [1];  [2]; ;  [3]
  1. Univ. of Georgia, Aiken, SC (United States)
  2. Technical Univ. of Denmark, Lyngby (Denmark)
  3. Univ. of Arkansas, Fayetteville, AK (United States)

A molecular dynamics model for clays and the oxide minerals is desirable for studying the kinetics and thermodynamics of adsorption processes. To this end, a valence force field for aluminous, dioctahedral clay minerals was developed. Novel aspects of this development include the bending potential for octahedral O-Al-O angles, which uses a quartic polynomial to create a double-well potential with minima at both 90{degree} and 180{degree}. Also, atomic point charges were derived from comparisons of ab initio molecular electrostatic potentials with X-ray diffraction-based deformation electron densities. Isothermal-isobaric molecular dynamics simulations of quartz, gibbsite, kaolinite, and pyrophyllite were used to refine the potential energy parameters. The resultant force field reproduced all the major structural parameters of these minerals to within 1% of their experimentally determined values. Transferability of the force field to simulations of adsorption onto clay mineral surfaces was tested through simulations of Na{sup +}, Ca{sup 2+}, and hexadecyltrimethylammonium (HDTMA{sup +}) in the interlayers of beidellite clays. The new force field worked rather well with independently derived nonbonded parameters for all three adsorbates, as indicated by comparisons between experimental and molecular-dynamics-predicted d{sub (001)} layer spacings of the homoionic beidellites. 97 refs., 6 figs., 3 tabs.

DOE Contract Number:
FC09-96SR18546
OSTI ID:
501902
Journal Information:
Journal of Physical Chemistry B: Materials, Surfaces, Interfaces, amp Biophysical, Vol. 101, Issue 9; Other Information: PBD: 27 Feb 1997
Country of Publication:
United States
Language:
English

Similar Records

Electrokinetics of natural and mechanically modified ripidolite and beidellite clays
Journal Article · Sat Aug 10 00:00:00 EDT 1996 · Journal of Colloid and Interface Science · OSTI ID:501902

Mineralogy of a perudic Andosol in central Java, Indonesia
Journal Article · Fri Feb 15 00:00:00 EST 2008 · Geoderma, 144:379-386 · OSTI ID:501902

Characterization of clay minerals by sup 27 Al nuclear magnetic resonance spectroscopy
Journal Article · · American Mineralogist; (USA) · OSTI ID:501902