Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Development of improved refractories

Technical Report ·
DOI:https://doi.org/10.2172/494130· OSTI ID:494130
; ;  [1];  [2]
  1. Oak Ridge National Lab., TN (United States)
  2. Univ. of Missouri, Rolla, MO (United States)
The goal of the proposed project is to provide expertise and facilities for the high temperature mechanical properties characterization of refractory materials which are of interest to the US DOE`s Office of Industrial Technologies Advanced Industrial Materials Project. Initially the project would establish dedicated refractory testing facilities which would be capable of generating representative engineering creep and high temperature modulus of elasticity (MOE) data to a temperature of 3300{degrees}F (1815{degrees}C) in ambient air. The generated engineering creep and MOE data would serve R&D requirements of refractories-manufacturers and its glass-manufacturer end-users and designers. The relevance of this effort to the refractory and glass-making industries would be ensured by coordinating the research activities through a membership with Alfred University`s Center for Glass Research (CGR) Satellite Center at the University of Missouri-Rolla (UMR), an NSF Center. Valid engineering creep and high temperature MOE data currently do not exist for almost all commercial refractories. Refractory end-users such as glass-manufacturers require such data for efficient and economical design of their various glass-melting furnace superstructures (e.g., furnace crowns). Refractories in glass production furnaces may be subjected to extreme temperatures as high as 3200{degrees}F (1760{degrees}C). With the simultaneous imposition of mechanical and thermal stresses, creep deformation of the refractory material will assuredly occur as a consequence. Designers must ensure that the structural integrity is maintained, so these high temperature deformations must be considered for successful glass furnace superstructure design. These criteria can only be satisfied with the utilization of representative engineering creep and high temperature MOE data for the refractory materials that are chosen for the design of the refractory superstructures.
Research Organization:
Oak Ridge National Lab., TN (United States)
OSTI ID:
494130
Report Number(s):
ORNL/TM--13399; ON: DE97005392
Country of Publication:
United States
Language:
English