Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Use of strain-annealing to evolve the grain boundary character distribution in polycrystalline copper

Conference ·
OSTI ID:491939

We have used a two-step (low and high temperature) strain-annealing process to evolve the grain boundary character distribution (GBCD) in fully recrystallized oxygen-free electronic (OFE) Cu bar that was forged and rolled. Orientation imaging microscopy has been used to characterize the GBCD after each step in the processing. The fraction of special grain boundaries was {similar_to}70% in the starting recrystallized material. Three different processing conditions were employed: high, moderate, and low temperature. The high-temperature process resulted in a reduction in the fraction of special GBs while both the lower temperature processes resulted in an increase in special fraction up to 85%. Further, the lower temperature processes resulted in average deviation angles from exact misorientation, for special boundaries, that were significantly smaller than observed from the high temperature process. Results indicate the importance of the low temperature part of the two-step strain-annealing process in preparing the microstructure for the higher temperature anneal and commensurate increase in the special fraction.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
491939
Report Number(s):
UCRL-JC--125672; CONF-9610242--5; ON: DE97053150
Country of Publication:
United States
Language:
English