skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Finite element modelling of transport and drift effects in tokamak divertor and SOL

Conference ·
OSTI ID:489550
;  [1]; ;  [2]
  1. INRS-Energie et Materiaux, Varennes, Quebec (Canada)
  2. Centre Canadien de Fusion Magnetique, Varennes, Quebec (Canada); and others

A finite element code is used to simulate transport of a single-species plasma in the edge and divertor of a tokamak. The physical model is based on Braginskii`s fluid equations for the conservation of particles, parallel momentum, ion and electron energy. In modelling recycling, transport of neutral density and energy is treated in the diffusion approximation. The electrostatic potential is obtained from the generalized Ohm`s law. It is used to compute the electric field and the associated E x B drift. In a first approximation, transport is assumed to be ambipolar. The system of equations is discretized on an unstructured triangular mesh, thus permitting good spatial resolution near the X-point and an accurate description of divertor plates of arbitrary shape. Special care must be taken to prevent numerical corruption of the highly anisotropic thermal diffusion. Comparisons will be made between simulations and experimental results from TdeV. This will focus, in particular, on density and temperature profiles at the divertor plates, and on the plasma parallel velocity in the SOL. The asymmetry in the power deposited to the inner and outer divertors and the effect of magnetic field reversal will be considered. Comparisons with B2-Eirene simulation results will also be presented.

OSTI ID:
489550
Report Number(s):
CONF-960354-; TRN: 97:011698
Resource Relation:
Conference: International Sherwood fusion theory conference, Philadelphia, PA (United States), 18-20 Mar 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 international Sherwood fusion theory conference; PB: 244 p.
Country of Publication:
United States
Language:
English