skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Linear and nonlinear dynamics of Alfven modes driven by energetic particles

Conference ·
OSTI ID:489480
; ; ;  [1]
  1. Associazione Euratom-ENEA sulla Fusione, Rome (Italy)

The understanding of the stability of global Alfven eigenmodes in the presence of energetic particles has been recognized to be very important in evaluating the success of the next step generation of thermonuclear fusion devices. The mode stability depends strongly on the spatial localization of the mode, being typically damped in the internal part of the discharge by Ion Landau Damping and being driven unstable if the mode is localized around 9 the maximum value of the pressure gradient of the energetic particles. Thus, the fully 2-D structure of the eigenmode is required in order to properly assess the issue of global Alfven modes stability, as, e.g., the Toroidal Alfven Eigenmodes (TAE). Furthermore, for realistic parameters, the effect of the drive and damping terms, as well as finite orbit widths of energetic particles and bulk-ions finite Larmor radius effects, cannot be treated perturbatively but should be considered at the same order as that at which toroidicity enters. The linear stability of TAE, Kinetic TAE (KTAE), and Energetic Particle continuum Mode (EPM) is studied using a code which solves the two-dimensional mode structure and global stability, in the limit of high toroidal mode number n, using a two spatial-scale WKBJ formalism treating drive and damping terms non-perturbatively. The nonlinear dynamics of these modes is studied by means a hybrid MHD-gyrokinetic particle simulation code. The code is able to treat low and moderately low toroidal mode number n. Nonperturbative treatment of the finite drift-orbit effects has been found to be crucial. It has been found that for typical parameters, the KTAE is indeed more unstable than the TAR In particular, in the nonlinear phase, the EPM is found to be particularly dangerous, leading to the expulsion of the energetic particles from the plasma column.

OSTI ID:
489480
Report Number(s):
CONF-960354-; TRN: 97:011627
Resource Relation:
Conference: International Sherwood fusion theory conference, Philadelphia, PA (United States), 18-20 Mar 1996; Other Information: PBD: 1996; Related Information: Is Part Of 1996 international Sherwood fusion theory conference; PB: 244 p.
Country of Publication:
United States
Language:
English