Multi-objective optimization of a flexible rotor in magnetic bearings with critical speeds and control current constraints
- National Chung Cheng Univ., Chia Yi (Taiwan, Province of China). Dept. of Mechanical Engineering
- National Cheng Kung Univ., Tainan (Taiwan, Province of China). Inst. of Aeronautics and Astronautics
This paper presents the single objective optimization and the multi-objective optimization for a flexible rotor system with magnetic bearings. The weight of rotor shaft and the transmitted forces at the magnetic bearings are minimized either individually or simultaneously under the constraints on the critical speeds and the control currents of magnetic bearings. The design variables are the cross-sectional area of the shaft, the bias currents of magnetic bearings, and the positions of the disk and the magnetic bearings. The dynamic characteristics are analyzed using the generalized polynomial expansion method and the sensitivity analysis is also studied. For single objective optimization, the method of feasible directions (MFD) is applied. For multi-objective optimization, the weighting method (WM), the goal programming method (GPM), and the fuzzy method (FM) are employed. It is found that the system design can be significantly affected by the choices of the bias currents of magnetic bearings, the position of the disk with unbalance, and the magnetic bearings. The results also show that a better compromised design can always be obtained for multi-objective optimization.
- OSTI ID:
- 483737
- Journal Information:
- Journal of Engineering for Gas Turbines and Power, Journal Name: Journal of Engineering for Gas Turbines and Power Journal Issue: 1 Vol. 119; ISSN JETPEZ; ISSN 0742-4795
- Country of Publication:
- United States
- Language:
- English
Similar Records
Analysis of linear rotor-bearing systems. A general transfer matrix method
The analysis of linear rotor-bearing systems: A general transfer matrix method