Spectrally determined singularities in a potential
- Univ. of Crete, Iraklion (Greece)
It has been known for a long time that the spectrum of the Sturm-Liouville operator {minus}{partial_derivative}{sub x}{sup 2}+ v(x) on a finite interval does not uniquely determine the potential v(x). In fact there are infinite-dimensional isospectral classes of potentials [PT]. Highly singular problems have been addressed as well, notably the question of the isospectral classes of the harmonic oscillator on the real line [McK-T], and, more recently, of the singular Sturm-Liouville operator {minus}{partial_derivative}{sub x}{sup 2} + {ell}({ell}+1)/x{sup 2} + v(x) on [0,1][GR]. In this paper we examine the question of whether the structure of isolated singularities in the potential is spectrally determined. As an example of the fruits of our efforts we were able to prove the following result for the Dirichlet problem: Suppose that v(x) {epsilon} C{sup {infinity}}([-1,1]/(0)) is real-valued and v{sup (k)}(1) for all k. Suppose that xv(x) is infinitely differentiable at x = 0 from the right and from the left and lim{sub x}{r_arrow}0+ (d/{sub dx}){sup K}xv(x) = (-1){sup k+1}lim{sub x{r_arrow}0}-(d/dx){sup k}xv(x), so that v(x) {approximately} {Sigma}{sub k}{sup {infinity}}=-1{sup vk}{center_dot}{vert_bar}x{vert_bar}{sup k} as x {r_arrow} 0, for some constants v{sub k}. Suppose that v{sub {minus}1}{ne}0. Then the spectrum of the Sturm-Liousville operator with periodic boundary conditions at {plus_minus}1 and Dirichlet conditions at x = 0 uniquely determines the sequence of asymptotic coefficients v{sub {minus}1}, v{sub 0}, v{sub 1},...Potentials with the 1/x singularity arise in the wave equation for a vibrating rod of variable cross-section, when the cross-sectional area of the rod vanishes quadratically (as a function of the distance from the end of the rod) at one point. The main reason why we look at this problem is as a model that will give us an idea of what can be expected when one attempts to get information about singularities from the spectrum.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 482448
- Journal Information:
- Communications in Partial Differential Equations, Journal Name: Communications in Partial Differential Equations Journal Issue: 9-10 Vol. 20; ISSN 0360-5302; ISSN CPDIDZ
- Country of Publication:
- United States
- Language:
- English
Similar Records
Low energy resolvent bounds for elliptic operators: An application to the study of waves in stratified media and fiber optics
Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential