skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197

Abstract

Paroxysmal choreoathetosis/episodic ataxia is a heterogeneous neurological syndrome usually inherited in an autosomal dominant manner. Recently, the association of one form of episodic ataxia (defined by the presence of additional myokymia) with point mutations in the potassium channel gene KCNA1 was described. This gene locus on chromosome 12p (HGMW-approved symbol CSE) was excluded in a large pedigree with paroxysmal choreoathetosis and additional spasticity. Linkage to chromosome 1p where a cluster of related potassium channel genes is located, was demonstrated. Genotyping of 18 affected and 11 unaffected family members with 28 microsatellites over a region of 45 cM proved linkage with a lod score of 7.2 at a recombination fraction {theta}=0 to D1S451/421/447/GGAT4C11. Crossing-over events in 9 patients and 4 unaffected offspring suggested a probable assignment of the gene to a region of 2 cM between D1S443 and D1S197. 24 refs., 1 fig.

Authors:
; ; ;  [1]
  1. Univ. Hospital, Duesseldorf (Germany) [and others
Publication Date:
OSTI Identifier:
478838
Resource Type:
Journal Article
Resource Relation:
Journal Name: Genomics; Journal Volume: 31; Journal Issue: 1; Other Information: PBD: 1 Jan 1996
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; HUMAN CHROMOSOME 1; CROSSING-OVER; GENETIC MAPPING; PORINS; GENE MUTATIONS; L CODES; PATIENTS; HEREDITARY DISEASES; NERVOUS SYSTEM DISEASES; GENOTYPE; GENETICS; HUMAN CHROMOSOME 12; DOMINANT MUTATIONS; POTASSIUM; BIOLOGICAL MARKERS

Citation Formats

Auburger, G., Ratzlaff, T., Lunkes, A., and Nelles, H.W. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197. United States: N. p., 1996. Web. doi:10.1006/geno.1996.0013.
Auburger, G., Ratzlaff, T., Lunkes, A., & Nelles, H.W. A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197. United States. doi:10.1006/geno.1996.0013.
Auburger, G., Ratzlaff, T., Lunkes, A., and Nelles, H.W. 1996. "A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197". United States. doi:10.1006/geno.1996.0013.
@article{osti_478838,
title = {A gene for autosomal dominant paroxysmal choreoathetosis/spasticity (CSE) maps to the vicinity of a potassium channel gene cluster on chromosome 1p, probably within 2 cM between D1S443 and D1S197},
author = {Auburger, G. and Ratzlaff, T. and Lunkes, A. and Nelles, H.W.},
abstractNote = {Paroxysmal choreoathetosis/episodic ataxia is a heterogeneous neurological syndrome usually inherited in an autosomal dominant manner. Recently, the association of one form of episodic ataxia (defined by the presence of additional myokymia) with point mutations in the potassium channel gene KCNA1 was described. This gene locus on chromosome 12p (HGMW-approved symbol CSE) was excluded in a large pedigree with paroxysmal choreoathetosis and additional spasticity. Linkage to chromosome 1p where a cluster of related potassium channel genes is located, was demonstrated. Genotyping of 18 affected and 11 unaffected family members with 28 microsatellites over a region of 45 cM proved linkage with a lod score of 7.2 at a recombination fraction {theta}=0 to D1S451/421/447/GGAT4C11. Crossing-over events in 9 patients and 4 unaffected offspring suggested a probable assignment of the gene to a region of 2 cM between D1S443 and D1S197. 24 refs., 1 fig.},
doi = {10.1006/geno.1996.0013},
journal = {Genomics},
number = 1,
volume = 31,
place = {United States},
year = 1996,
month = 1
}
  • Inherited retinal dystrophy is a common cause of visual impairment. Cone dystrophy affects the cone function and is manifested as progressive loss of the central vision, defective color vision, and photophobia. Linkage was demonstrated between progressive cone dystrophy (CORD5) and genetic markers on chromosome 17p12-p13 in a five-generation family. Multipoint analysis gave a maximum lod score of 7.72 at the marker D17S938. Recombinant haplotypes in the family suggest that the cone dystrophy locus is located in a 25-cM interval between the markers D17S926/D17S849 and D17S804/D17S945. Furthermore, one recombination was detected between the disease locus and a microsatellite marker in themore » candidate gene RCV1, encoding the retinal protein recoverin. Two additional candidate genes encoding retinal guanylate cyclase (GUC2D) and pigment epithelium-derived factor (PEDF) are located at 17p13.1. Moreover, loci for retinitis pigmentosa and Leber congenital amaurosis have been mapped to the same region. Identification of the cone dystrophy locus may be of importance not only for identifying functional genes in the cone system, but also for identifying genes for other retinal disorders. 34 refs., 3 figs., 2 tabs.« less
  • Dyskinesias are hyperkinetic and involuntary movements that may result from any of a number of different genetic, infectious, and drug-induced causes. Some of the hereditary dyskinetic syndromes are characterized by paroxysmal onset of the abnormal movements. The classification of the familial paroxysmal dyskinesias (FPD) recognizes several distinct, although overlapping, phenotypes. Different forms of the disorder include attacks that are (1) induced by sudden movement (kinesiogenic); (2) spontaneous (non-kinesiogenic); and (3) induced by prolonged periods of exertion. Linkage analysis was pursued in a family segregating an autosomal dominant allele for non-kinesiogenic FPD. The disease allele was mapped to a locus onmore » chromosome 2q31-36 (LOD score 4.64, {theta} = 0). Identification of distinct genetic loci for the paroxysmal dyskinesias will lead to a new genetic classification and to better understanding of these disorders. 26 refs., 2 figs., 1 tab.« less
  • A novel human gene (sazD) that maps to the autosomal dominant polycystic kidney disease region shares sequence similarity with members of the [beta]-transducin superfamily. The cDNA sazD-c predicts an [approximately]58-kDa protein (sazD) with seven internal repeats, similar to the WD-40 motif of the transducin family. The size of this protein family has been expanding rapidly; however, neither the structure nor the function of this repeated motif is known. Preliminary data do not suggest that sazD is mutated in patients with polycystic kidney disease. 13 refs., 2 figs.
  • The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. The authors have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. The authors suggest designating this new locus [open quotes]SCA3.[close quotes] Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinicallymore » different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus. 36 refs., 4 figs., 3 tabs.« less
  • We have used a total of 27 AXB/BXA recombinant inbred mouse strains to determine the chromosomal location of a newly identified gene encoding an {alpha}-subunit isoform of the sodium channel from Schwann cells, Scn9a. Linkage analysis established that Scn9a mapped to the proximal segment of mouse chromosome 2. The segregation of restriction fragment length polymorphisms in 145 progeny from a Mus spretus x C57BL/6J backcross indicates that Scn9a is very tightly linked to Scn1a (gene encoding the type I sodium channel {alpha}-subunit of the brain) and forms part of a cluster of four Scna genes located on mouse chromosome 2.more » 17 refs., 1 fig., 3 tabs.« less