skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics

Abstract

This is shaping up as a vintage year for studies of the genetics and evolution of the human mitochondrial genome (mtDNA). In a theoretical and experimental tour de force, Shenkar et al. (1996), on pages 772-780 of this issue, derive the mutation rate of the 4,977-bp (or {open_quotes}common{close_quotes}) deletion in the human mtDNA through refinement and extension of fluctuation analysis, a technique that was first used >50 years ago. Shenkar et al., in essence, have solved or bypassed many of the difficulties that are inherent in the application of fluctuation analysis to human mitochondrial gene mutations. Their study is important for two principal reasons. In the first place, high levels of this deletion cause a variety of pathological disorders, including Kearns-Sayre syndrome and chronic progressive external ophthalmoplegia. Their current report, therefore, is a major step in the elucidation of the molecular genetic pathogenesis of this group of mitochondrial disorders. For example, it now may be feasible to analyze the effects of selection on transmission and segregation of this deletion and, perhaps, other mtDNA mutations as well. Second, and at a broader level, the approach of Shenkar et al. should find widespread applicability to the study of other mtDNA mutations. Itmore » has been recognized for several years that mammalian mtDNA mutates much more rapidly than nuclear DNA, a phenomenon with potentially profound evolutionary implications. It is exciting and useful, both experimentally and theoretically, that this {open_quotes}old{close_quotes} approach can be used for {open_quotes}new{close_quotes} applications. 56 refs.« less

Authors:
 [1]
  1. Univ. of Texas Medical Branch, Galveston, TX (United States)
Publication Date:
OSTI Identifier:
476744
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Human Genetics; Journal Volume: 59; Journal Issue: 4; Other Information: PBD: Oct 1996
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; MITOCHONDRIA; GENOME MUTATIONS; BIOLOGICAL EVOLUTION; MUTATION FREQUENCY; BACTERIA; GENES; GENE MUTATIONS; HEREDITARY DISEASES; GENETICS; NUCLEOTIDES; PHENOTYPE

Citation Formats

Howell, N. Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics. United States: N. p., 1996. Web.
Howell, N. Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics. United States.
Howell, N. 1996. "Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics". United States. doi:.
@article{osti_476744,
title = {Mutational analysis of the human mitochondrial genome branches into the realm of bacterial genetics},
author = {Howell, N.},
abstractNote = {This is shaping up as a vintage year for studies of the genetics and evolution of the human mitochondrial genome (mtDNA). In a theoretical and experimental tour de force, Shenkar et al. (1996), on pages 772-780 of this issue, derive the mutation rate of the 4,977-bp (or {open_quotes}common{close_quotes}) deletion in the human mtDNA through refinement and extension of fluctuation analysis, a technique that was first used >50 years ago. Shenkar et al., in essence, have solved or bypassed many of the difficulties that are inherent in the application of fluctuation analysis to human mitochondrial gene mutations. Their study is important for two principal reasons. In the first place, high levels of this deletion cause a variety of pathological disorders, including Kearns-Sayre syndrome and chronic progressive external ophthalmoplegia. Their current report, therefore, is a major step in the elucidation of the molecular genetic pathogenesis of this group of mitochondrial disorders. For example, it now may be feasible to analyze the effects of selection on transmission and segregation of this deletion and, perhaps, other mtDNA mutations as well. Second, and at a broader level, the approach of Shenkar et al. should find widespread applicability to the study of other mtDNA mutations. It has been recognized for several years that mammalian mtDNA mutates much more rapidly than nuclear DNA, a phenomenon with potentially profound evolutionary implications. It is exciting and useful, both experimentally and theoretically, that this {open_quotes}old{close_quotes} approach can be used for {open_quotes}new{close_quotes} applications. 56 refs.},
doi = {},
journal = {American Journal of Human Genetics},
number = 4,
volume = 59,
place = {United States},
year = 1996,
month =
}
  • We explored the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in 100 Tunisian families affected with NSHL and in 100 control individuals. We identified the mitochondrial A1555G mutation in one out of these 100 families and not in the 100 control individuals. Members of this family harbouring the A1555G mutation showed phenotypic heterogeneity which could be explained by an eventual nuclear-mitochondrial interaction. So, we have screened three nuclear genes: GJB2, GJB3, and GJB6 but we have not found correlation between the phenotypic heterogeneity and variants detected in these genes. We explored also the entire mitochondrial 12S rRNA and themore » tRNA{sup Ser(UCN)} genes. We detected five novel polymorphisms: T742C, T794A, A813G, C868T, and C954T, and 12 known polymorphisms in the mitochondrial 12S rRNA gene. None of the 100 families or the 100 controls were found to carry mutations in the tRNA{sup Ser(UCN)} gene. We report here First mutational screening of the mitochondrial 12S rRNA and the tRNA{sup Ser(UCN)} genes in the Tunisian population which describes the second family harbouring the A1555G mutation in Africa and reveals novel polymorphisms in the mitochondrial 12S rRNA gene.« less
  • Flavivirus gene expression is modulated by RNA secondary structure elements at the terminal ends of the viral RNA molecule. For tick-borne encephalitis virus (TBEV), four stem-loop (SL) elements have been predicted in the first 180 nucleotides of the viral genome: 5'-SL1, 5'-SL2, 5'-SL3 and 5'-SL4. The last three of these appear to be unique to tick-borne flaviviruses. Here, we report their characterization by mutagenesis in a TBEV luciferase reporter system. By manipulating their thermodynamic properties, we found that an optimal stability of the 5'-SL2 is required for efficient RNA replication. 5'-SL3 formation is also important for viral RNA replication, butmore » although it contains the viral start codon, its formation is dispensable for RNA translation. 5'-SL4 appears to facilitate both RNA translation and replication. Our data suggest that maintenance of the balanced thermodynamic stability of these SL elements is important for temporal regulation of its different functions.« less
  • The results of an empirical nucleotide-sequencing approach indicate that the evolution of the human mitochondrial noncoding D-loop is both more rapid and more complex than is revealed by standard phylogenetic approaches. The nucleotide sequence of the D-loop region of the mitochondrial genome was determined for 45 members of a large matrilineal Leber hereditary optic neuropathy pedigree. Two germ-line mutations have arisen in members of one branch of the family, thereby leading to triplasmic descendants with three mitochondrial genotypes. Segregation toward the homoplasmic state can occur within a single generation in some of these descendants, a result that suggests rapid fixationmore » of mitochondrial mutations as a result of developmental bottlenecking. However, slow segregation was observed in other offspring, and therefore no single or simple pattern of segregation can be generalized from the available data. Evidence for rare mtDNA recombination within the D-loop was obtained for one family member. In addition to these germ-line mutations, a somatic mutation was found in the D-loop of one family member. When this genealogical approach was applied to the nucleotide sequences of mitochondrial coding regions, the results again indicated a very rapid rate of evolution. 44 refs., 2 figs., 2 tabs.« less
  • The human mitochondrial genoma contains a 23-nucleodtide sequence that is homologous to a part of the 5S rRNA's of bacteria. This homology, the structure of the likely transcript, and the location of the sequence relative to the mitochondrial rRNA genes suggest that the sequence represents a fragmentary 5S rRNA gene.