Argentine experience on immobilization of simulated high-level liquid wastes in sintered borosilicate and aluminoborosilicate glasses
- and others
A research and development program on sintering for the immobilization of high-level liquid wastes (HLLW) is carried out since 1984 at the Division Materiales Nucleares of the Centro Atomico Bariloche. Sintered samples were produced with glasses from diverse sources and with different compositions: a German borosilicate glass (VG98/12), its local counterpart (Simil VG) and a German aluminoborosilicate glass (SG7). Simulated HLLW, light water reactor (LWR) and heavy water reactor (PHWR) types, were immobilized in these glasses with a waste loading of 10 wt.%. The behavior, including thermal stability and chemical corrosion, was studied for the sintered glasses with and without simulated HLLW. Borosilicate and aluminoborosilicate glass samples were obtained by cold pressing and sintering (CP+S), also known as pressureless sintering. Borosilicate glass samples were also produced by uniaxial hot pressing (UBP), also known as pressure sintering, in graphite dies or in the final metal container (in-can). Devitrification studies were carried out on SG7 and VG98/12 with and without simulated PHWR wastes. The microstructure of both cold pressed and sintered VG98/12-10LWR and Simil VG-IOLWR, in which calcined waste particles were immobilized, shows that the particles did not dissolve in the glass, but were homogeneously dispersed. Leaching tests (MCC-IP) were carried out at temperatures lower than 373 K. The gamma radiation damage was produced by a {sup 60}Co gamma field (Division Fuentes Intensas, Centro Atomico Ezeiza, C.N.E.A.). The dose rate was 4.34x 10{sup 4} Gy/h and the total doses ranging from 1.4 x 10{sup 6} GY to 2.0 x 10{sup 8} Gy. The density, the degree of devitrification, the microstructure and the leaching rate in ADI remained unaffected by the gamma irradiation. After leaching tests, the waste zones were more affected than the glass matrix and there was no global difference with the irradiation dose.
- OSTI ID:
- 476558
- Report Number(s):
- CONF-960804--Vol.3; CNN: Contract 6745/RB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Comparative assessment of TRU waste forms and processes. Volume I. Waste form and process evaluations
Selected transuranic waste immobilization systems