THE DEUTERIUM ISOTOPE RATE EFFECT IN FREE RADICAL REACTIONS OF t-CARBON DEUTERATED DDT AND ITS ANALOGS
DDT and several of its analogs were synthesized with deuterium in the t- carbon position so that any chemical reaction involving this site in the molecule would then be subject to the deuterium isotope rate effect. Lithium aluminum deuteride, used as the source of the deuterium, was employed to reduce trichloromethyl p-chlorophenyl ketone, trichloromethyl p-bromophenyl ketone, and trichloromethyl p-methoxyphenyl ketone to the corresponding alcohols. The alcohols were then condensed with chlorobenzene, bromobenzene, and anisole respectively to form 1,1,1-trichloro2,2-bis(p-chloro-phenyl)ethane-2-d (d-DDT), 1,1,1-trichloro-2,2-bis (p-bromophenyl)ethane-2-d (d-DBrDT), and 1,1, 1-trichloro- 2,2-bis (p-methoxyphenyl)ethane (d-methoxychlor). The deuterated and non- deuterated insecticides were identical in physical appearance and melting points. Infrared spectra showed sigrificant differences; in particular, each deuterated compound had a distinctive band at ca 10.5 mu , missing in the spectra of the non-deuterated insecticides. NMR analysis confirmed the tertiary position of the deuterium and gave proof of high isotopic purity, each insecticide being 98% deuterated in the desired site. The isotope rate effect was first studied in the reaction of DDT, methoxychlor, and their deuterated analogs with alcoholic sodium- hydroxide. The base catalyzed dehydrohalogenation showed an isotope rate effect, k/sub H//k/sub D/, of the order of 5.4 for DDT and 8 for methoxychlor. The results were considered to be of a magnitude sufficient for the isotope rate effect to be manifested in the in vivo studies. The insecticides and their deuterated analogs were tested for toxicity on houseflies. The results showed that d-DDT and d-DBrDT were more toxic than their non-deuterated counterparts by a factor of ca 1.5 while d-methoxychlor showed a toxicity equal to methoxychlor. The results are explained on the basis of the detoxication process in the insects. In vitro studies showed that DDT-dehydrochlorinase, an enzyme capable of detoxifying DDT, manifested the isotope rate effect. It appeared, therefore, that in the detoxication process, the deuterated insecticide reacted more slowly, and though the initial dose given to the insect was less than that of the non- deuterated insecticide, the amount reaching the susceptible site in the insect was the same. The data support the view that at least one mode of resistance to DDT is chemical in nature and that the tertiary carbon-hydrogen group is involved. The data also indicated that susceptible houseflies contain some mechanlsm that can detoxify DDT and that this detoxication is chemical and subject to the isotope rate effect. (P.C.H.)
- Research Organization:
- Originating Research Org. not identified
- NSA Number:
- NSA-17-008118
- OSTI ID:
- 4738967
- Country of Publication:
- Country unknown/Code not available
- Language:
- English
Similar Records
DDT Polymorphism and the Lethality of Crystal Forms
Related Subjects
ALUMINUM COMPOUNDS
BENZENE
BROMINATED HYDROCARBONS
CATALYSIS
CHEMICAL REACTIONS
CHEMICALS
CHEMISTRY
CHLORINATED HYDROCARBONS
DDT
DEUTERIUM
DEUTERIUM COMPOUNDS
ENZYMES
ETHANE
ETHERS
FREE RADICALS
INFRARED RADIATION
INSECTICIDES
INSECTS
ISOTOPE EFFECTS
KETONES
LIQUEFYING
LITHIUM COMPOUNDS
NUCLEAR MAGNETIC RESONANCE
ORGANIC CHLORINE COMPOUNDS
PHENYL RADICALS
REDUCTION
SODIUM HYDROXIDES
SPECTRA
TOXICITY