Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Approximating shallow-light trees

Conference ·
OSTI ID:471664
 [1];  [2]
  1. Open Univ. of Israel, Ramat Aviv (Israel)
  2. Weizmann Institute of Science, Rehovot (Israel)

This paper deals with the problem of constructing Steiner trees of minimum weight with diameter bounded by d, spanning a given set V of {nu} vertices in a graph. Exact solutions or logarithmic ratio approximation algorithms were known before for the cases of d {le} 5. Here we give a polynomial time approximation algorithm of ratio d log {nu} for constant d, and an algorithm of ratio {nu}{sup {epsilon}}, for any fixed 0 < {epsilon} < 1, for general d.

OSTI ID:
471664
Report Number(s):
CONF-970142--
Country of Publication:
United States
Language:
English

Similar Records

Polynomial time approximation schemes for Euclidean TSP and other geometric problems
Conference · Mon Dec 30 23:00:00 EST 1996 · OSTI ID:457631

Distributed approximate minimal Steiner trees with millions of seed vertices on billion-edge graphs
Journal Article · Tue Jun 20 00:00:00 EDT 2023 · Journal of Parallel and Distributed Computing · OSTI ID:2007614

Improving minimum cost spanning trees by upgrading nodes
Technical Report · Sat Oct 31 23:00:00 EST 1998 · OSTI ID:677151