Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

UNDULATORY RIEMANNIAN SPACES

Journal Article · · Journal of Mathematical Physics (New York) (U.S.)
DOI:https://doi.org/10.1063/1.1704021· OSTI ID:4700466
A demonstration is given that Riemannian spaces of very high curvature in submicroscopic domains do not contradict the existence of a macroscopic line element that is nearly Minkowskian. The signature of the microscopic line element is positive definite, and the wave property of the metric in macroscopic domains comes about by a peculiar wave-guide action'' of a strongly curved, two- dimensional line element, in harmony with the particle-like behavior of the photon. The fourdimensional lattice structure of the metrical vacuum field does not establish an absoiute frame of reference and can be harmonized with the macroscopic validity of the Jorentz transformations. (auth)
Research Organization:
Dublin Inst. for Advanced Studies
Sponsoring Organization:
USDOE
NSA Number:
NSA-17-031144
OSTI ID:
4700466
Journal Information:
Journal of Mathematical Physics (New York) (U.S.), Journal Name: Journal of Mathematical Physics (New York) (U.S.) Vol. Vol: 4; ISSN JMAPA
Country of Publication:
Country unknown/Code not available
Language:
English

Similar Records

SIGNAL PROPAGATION IN A POSITIVE DEFINITE RIEMANNAN SPACE
Journal Article · Mon Apr 27 00:00:00 EDT 1964 · Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D · OSTI ID:4027422

Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature
Journal Article · Sun Feb 14 23:00:00 EST 2010 · Physics of Atomic Nuclei · OSTI ID:21443611

Debye potentials in Riemannian spaces
Journal Article · Mon Dec 31 23:00:00 EST 1973 · J. Math. Phys. (N.Y.), v. 15, no. 1, pp. 14-16 · OSTI ID:4313899