UNDULATORY RIEMANNIAN SPACES
Journal Article
·
· Journal of Mathematical Physics (New York) (U.S.)
A demonstration is given that Riemannian spaces of very high curvature in submicroscopic domains do not contradict the existence of a macroscopic line element that is nearly Minkowskian. The signature of the microscopic line element is positive definite, and the wave property of the metric in macroscopic domains comes about by a peculiar wave-guide action'' of a strongly curved, two- dimensional line element, in harmony with the particle-like behavior of the photon. The fourdimensional lattice structure of the metrical vacuum field does not establish an absoiute frame of reference and can be harmonized with the macroscopic validity of the Jorentz transformations. (auth)
- Research Organization:
- Dublin Inst. for Advanced Studies
- Sponsoring Organization:
- USDOE
- NSA Number:
- NSA-17-031144
- OSTI ID:
- 4700466
- Journal Information:
- Journal of Mathematical Physics (New York) (U.S.), Journal Name: Journal of Mathematical Physics (New York) (U.S.) Vol. Vol: 4; ISSN JMAPA
- Country of Publication:
- Country unknown/Code not available
- Language:
- English
Similar Records
SIGNAL PROPAGATION IN A POSITIVE DEFINITE RIEMANNAN SPACE
Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature
Debye potentials in Riemannian spaces
Journal Article
·
Mon Apr 27 00:00:00 EDT 1964
· Physical Review (U.S.) Superseded in part by Phys. Rev. A, Phys. Rev. B: Solid State, Phys. Rev. C, and Phys. Rev. D
·
OSTI ID:4027422
Superintegrable potentials on 3D Riemannian and Lorentzian spaces with nonconstant curvature
Journal Article
·
Sun Feb 14 23:00:00 EST 2010
· Physics of Atomic Nuclei
·
OSTI ID:21443611
Debye potentials in Riemannian spaces
Journal Article
·
Mon Dec 31 23:00:00 EST 1973
· J. Math. Phys. (N.Y.), v. 15, no. 1, pp. 14-16
·
OSTI ID:4313899