Comparison and modeling of aqueous dissolution rates of various uranium oxides
Purpose of this work was to measure and model the intrinsic dissolution rates of U oxides under a variety of well-controlled conditions that are relevant to a geologic repository. When exposed to air at elevated temperature, spent fuel may form the stable phase U{sub 3}O{sub 8}. Dehydrated schoepite, UO{sub 3}{center_dot}H{sub 2}O, exists in drip tests on spent fuel. Equivalent sets of U{sub 3}O{sub 8} and UO{sub 3}{center_dot}H{sub 2}O dissolution experiments allowed a systematic examination of the effects of temperature (25-75 C), pH(8-10), and carbonate (2-200x10{sup -4}molar) concentrations at atmospheric oxygen conditions. Results indicate that UO{sub 3}{center_dot}H{sub 2}O has a much higher dissolution rate (at least tenfold) than U{sub 3}O{sub 8} under the same conditions. The intrinsic dissolution rate of unirradiated U{sub 3}O{sub 8} is about twice that of UO{sub 2}. Dissolution of both U{sub 3}O{sub 8} and UO{sub 3}{center_dot}H{sub 2}O shows a very high sensitivity to carbonate concentration. Present results show a 25 to 50-fold increase in room-temperature UO{sub 3}{center_dot}H{sub 2}O dissolution rates between the highest and lowest carbonate concentrations. As with the UO{sub 2} dissolution data, the classical observed chemical kinetic rate law was used to model the U{sub 3}O{sub 8} dissolution rate data. The pH did not have much effect on the models, in agreement with earlier analysis of the UO{sub 2} and spent fuel dissolution data. However, carbonate concentration, not temperature, had the strongest effect on the U{sub 3}O{sub 8} dissolution rate. The U{sub 3}O{sub 8} dissolution activation energy was about 6000 cal/mol, compared with 7300 and 8000 cal/mol for spent fuel and UO{sub 2}, respectively.
- Research Organization:
- Lawrence Livermore National Lab., CA (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- W-7405-ENG-48
- OSTI ID:
- 469638
- Report Number(s):
- UCRL-JC--124602; CONF-961202--108; ON: DE97051537
- Country of Publication:
- United States
- Language:
- English
Similar Records
Comparison of uranium dissolution rates from spent fuel and uranium dioxide
Dissolution kinetics of UO sub 2 : Flow-through tests on UO sub 2. 00 pellets and polycrystalline schoepite samples in oxygenated, carbonate/bicarbonate buffer solutions at 25 degree C