skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Utilization of Cs{sup 137} to generate a radiation barrier for weapons grade plutonium immobilized in borosilicate glass canisters. Revision 1

Conference ·
OSTI ID:46604

One of the ways recommended by a recent National Academy of Sciences study to dispose of excess weapons-grade plutonium is to encapsulate the plutonium in a glass in combination with high-level radioactive wastes (HLW) to generate an intense radiation dose rate field. The objective is to render the plutonium as difficult to access as the plutonium contained in existing US commercial spent light-water reactor (LWR) fuel until it can be disposed of in a permanent geological repository. A radiation dose rate from a sealed canister of 1,000 rem/h (10 Sv/h) at 1 meter for at least 30 years after fabrication was assumed in this paper to be a radiation dose comparable to spent LWR fuel. This can be achieved by encapsulating the plutonium in a borosilicate glass with an adequate amount of a single fission product in the HLWS, namely radioactive Cs{sup 137}. One hundred thousand curies of Cs{sup 137} will generate a dose rate of 1,000 rem/h (10 Sv/h) at 1 meter for at least 30 years when imbedded into canisters of the size proposed for the Savannah River Site`s vitrified high-level wastes. The United States has a current inventory of 54 MCi of CS{sup 137} that has been separated from defense HLWs and is in sealed capsules. This single curie inventory is sufficient to spike 50 metric tons of excess weapons-grade plutonium if plutonium can be loaded at 5.5 wt% in glass, or 540 canisters. Additional CS{sup 137} inventories exist in the United States` HLWs from past reprocessing operations, should additional curies be required. Using only one fission product, CS{sup 137}, rather than the multiple chemical elements and compounds in HLWs to generate a high radiation dose rate from a glass canister greatly simplifies the processing engineering retirement for encapsulating plutonium in a borosilicate glass.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
46604
Report Number(s):
UCRL-JC-118741-Rev.1; CONF-950216-111-Rev.1; ON: DE95009844; TRN: 95:011003
Resource Relation:
Conference: Waste management `95, Tucson, AZ (United States), 26 Feb - 2 Mar 1995; Other Information: PBD: Jan 1995
Country of Publication:
United States
Language:
English