skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling and optimization of a semiregenerative catalytic naphtha reformer

Journal Article · · AIChE Journal
;  [1]
  1. Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

Modeling and optimization of a semiregenerative catalytic naphtha reformer has been carried out considering most of its key constituent units. A detailed kinetic scheme involving 35 pseudocomponents connected by a network of 36 reactions in the C{sub 5}-C{sub 10} range was modeled using Hougen-Watson Langmuir-Hinshelwood-type reaction-rate expressions. Deactivation of the catalyst was modeled by including the corresponding equations for coking kinetics. The overall kinetic model was parameterized by bench-marking against industrial plant data using a feed-characterization procedure developed to infer the composition of the chemical species in the feed and reformate from their measured ASTM distillation data. For the initial optimization studies, a constant reactor inlet temperature configuration that would lead to optimum operation over the entire catalyst life cycle was identified. The analysis was extended to study the time-optimal control profiles of decision variables over the run length. In addition, the constant octane case was also studied. The improvement in the objective function achieved in each case was determined. Finally, the sensitivity of the optimal results to uncertainty in reactor-model parameters was evaluated.

OSTI ID:
460562
Journal Information:
AIChE Journal, Vol. 43, Issue 3; Other Information: PBD: Mar 1997
Country of Publication:
United States
Language:
English