Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The Boolean Isomorphism problem

Conference ·
OSTI ID:457672
 [1];  [2]
  1. Indian Institute of Technology, Kanpur (India)
  2. Universitaet Ulm (Germany)

We investigate the computational complexity of the Boolean Isomorphism problem (BI): on input of two Boolean formulas F and G decide whether there exists a permutation of the variables of G such that F and G become equivalent. Our main result is a one-round interactive proof for BI, where the verifier has access to an NP oracle. To obtain this, we use a recent result from learning theory by Bshouty et.al. that Boolean formulas can be learned probabilistically with equivalence queries and access to an NP oracle. As a consequence, BI cannot be {sigma}{sup p}{sub 2} complete unless the Polynomial Hierarchy collapses. This solves an open problem posed in [BRS95]. Further properties of BI are shown: BI has And- and Or-functions, the counting version, No. BI, can be computed in polynomial time relative to BI, and BI is self-reducible.

OSTI ID:
457672
Report Number(s):
CONF-961004--
Country of Publication:
United States
Language:
English

Similar Records

Approximate solutions to NP-optimization problems
Conference · Fri Dec 30 23:00:00 EST 1994 · OSTI ID:36190

Quantum annealing algorithms for Boolean tensor networks
Journal Article · Fri May 20 00:00:00 EDT 2022 · Scientific Reports · OSTI ID:1869036

Characterizing short-term stability for Boolean networks over any distribution of transfer functions
Journal Article · Tue Jul 05 00:00:00 EDT 2016 · Physical Review E · OSTI ID:1338403