The effect of nozzle aspect ratio on the heat transfer characteristics of elliptic impinging jet
- Pohang Univ. of Science and Technology (Korea, Republic of)
The local heat transfer characteristics were investigated for a turbulent air jet issuing, normal to a heated flat plate, from an elliptic nozzle with various aspect ratios. Experimental parameters used in this study are the nozzle aspect ratio (AR = a/b) of 1, 1.5, 2, 3, and 4 having the same equivalent diameter D{sub e} and the nozzle-to-plate distance (L/D{sub e}) of 2, 4, 6, and 10. The temperature distribution on the heated flat plate was measured using a thermochromic liquid crystal and an improved image processing system that produced an unbiased color determination on liquid crystal. With varying the nozzle-to-plate distance, the isothermal contour on the heated flat plate showed an axis-switching phenomenon in its elliptical cross-section shape. As the aspect ratio of the elliptic nozzle increases, the heat transfer rate for the elliptic impinging jet with short nozzle-to-plate distance becomes larger than that of a circular jet in the impingement region. at L/D{sub e} = 2, the Nusselt number of an elliptic impinging jet with AR = 4 was maximum 15% higher than that of a circular impinging jet. This was caused by the engulfing large entrainment rate and large scale coherent structure of the elliptic jet.
- OSTI ID:
- 455393
- Report Number(s):
- CONF-951135--; ISBN 0-7918-1752-0
- Country of Publication:
- United States
- Language:
- English
Similar Records
Local heat transfer coefficients under an axisymmetric, single-phase liquid jet
Heat transfer from an obliquely impinging circular air jet to a flat plate