Symmetric Lie algebras of non-linear transformations of conformal type in quantum mechanics
Journal Article
·
· Int. J. Theor. Phys., v. 7, no. 5, pp. 379-388
The Koecher construction of simple symmetric Lie algebras is used to realize colineation and conformal Lle algebras of nonlinear transformations of a pseudo-orthogonal vector space in the canonical Weyl algebras, which are used in the Schroedinger representation. The realization maps the linear sub-algebras onto symmetrized polynomials of second degree, whereas the nonlinear parts are mapped onto polynomials of flrst and third degree. For the two examples the Meyberg Jordan algebras are explicitly given. (auth)
- Research Organization:
- Univ., Marburg, Ger.
- NSA Number:
- NSA-29-001490
- OSTI ID:
- 4388996
- Journal Information:
- Int. J. Theor. Phys., v. 7, no. 5, pp. 379-388, Journal Name: Int. J. Theor. Phys., v. 7, no. 5, pp. 379-388; ISSN IJTPB
- Country of Publication:
- United Kingdom
- Language:
- English
Similar Records
Realizations of conformal current-type Lie algebras
Orthogonal polynomials in the Lie algebras
Semiclassical states on Lie algebras
Journal Article
·
Sat May 15 00:00:00 EDT 2010
· Journal of Mathematical Physics
·
OSTI ID:21335957
Orthogonal polynomials in the Lie algebras
Journal Article
·
Fri Oct 31 23:00:00 EST 1986
· Sov. Phys. J. (Engl. Transl.); (United States)
·
OSTI ID:5336428
Semiclassical states on Lie algebras
Journal Article
·
Sun Mar 15 00:00:00 EDT 2015
· Journal of Mathematical Physics
·
OSTI ID:22403124