Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Weldability and toughness assessment of Ti-microalloyed offshore steel

Journal Article · · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science
;  [1];  [2]
  1. Univ. of Maribor (Slovenia). Faculty of Mechanical Engineering
  2. GKSS Research Center Geesthacht (Germany)

The present study has been carried out to investigate the coarse-grained heat-affected zone (CGHAZ) microstructure and crack tip opening displacement (CTOD) toughness of grade StE 355 Ti-microalloyed offshore steels. Three parent plates (40-mm thick) were studied, two of which had Ti microalloying with either Nb + V or Nb also present. As a third steel, conventional StE 355 steel without Ti addition was welded for comparison purposes. Multipass tandem submerged arc weld (SAW) and manual metal arc weld (SMAW) welds were produced. Different heat-affected zone (HAZ) microstructures were simulated to ascertain the detrimental effect of welding on toughness. All HAZ microstructures were examined using optical and electron microscopy. It can be concluded that Ti addition with appropriate steel processing, which disperses fine TiN precipitates uniformly, with a fine balance of other microalloying elements and with a Ti/N weight ratio of about 2.2, is beneficial for HAZ properties of StE 355 grade steel.

Sponsoring Organization:
USDOE
OSTI ID:
438595
Journal Information:
Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Journal Name: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Journal Issue: 1 Vol. 28; ISSN 1073-5623; ISSN MMTAEB
Country of Publication:
United States
Language:
English