skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mutational analysis of the human MAOA gene

Abstract

The monoamine oxidases (MAO-A and MAO-B) are the enzymes primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Wide variations in activity of these isozymes have been reported in control humans. The MAOA and MAOB genes are located next to each other in the p11.3-11.4 region of the human X chromosome. Our recent documentation of an MAO-A-deficiency state, apparently associated with impulsive aggressive behavior in males, has focused attention on genetic variations in the MAOA gene. In the present study, variations in the coding sequence of the MAOA gene were evaluated by RT-PCR, SSCP, and sequencing of mRNA or genomic DNA in 40 control males with >100-fold variations in MAOA activity, as measured in cultured skin fibroblasts. Remarkable conservation of the coding sequence was found, with only 5 polymorphisms observed. All but one of these were in the third codon position and thus did not alter the deduced amino acid sequence. The one amino acid alteration observed, lys{r_arrow}arg, was neutral and should not affect the structure of the protein. This study demonstrates high conservation of coding sequence in the human MAOA gene in control males, and provides primer sets which can be used to searchmore » genomic DNA for mutations in this gene in males with neuropsychiatric conditions. 47 refs., 1 fig., 2 tabs.« less

Authors:
; ; ;  [1];  [2]
  1. Harvard Medical School, Boston, MA (United States)
  2. VA Medical Center, West Roxbury, MA (United States)
Publication Date:
OSTI Identifier:
437203
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Medical Genetics; Journal Volume: 67; Journal Issue: 1; Other Information: PBD: 16 Feb 1996
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; HUMAN X CHROMOSOME; GENETIC MAPPING; AMINE OXIDASES; GENE MUTATIONS; ENZYME ACTIVITY; DNA SEQUENCING; STRUCTURE-ACTIVITY RELATIONSHIPS; BEHAVIOR; SEX DEPENDENCE; MALES; HEREDITARY DISEASES; METABOLIC DISEASES; POLYMERASE CHAIN REACTION; CODONS; AMINO ACID SEQUENCE

Citation Formats

Tivol, E.A., Shalish, C., Schuback, D.E., Breakefield, X.O., and Hsu, Yun-Pung. Mutational analysis of the human MAOA gene. United States: N. p., 1996. Web. doi:10.1002/(SICI)1096-8628(19960216)67:1<92::AID-AJMG16>3.0.CO;2-K.
Tivol, E.A., Shalish, C., Schuback, D.E., Breakefield, X.O., & Hsu, Yun-Pung. Mutational analysis of the human MAOA gene. United States. doi:10.1002/(SICI)1096-8628(19960216)67:1<92::AID-AJMG16>3.0.CO;2-K.
Tivol, E.A., Shalish, C., Schuback, D.E., Breakefield, X.O., and Hsu, Yun-Pung. 1996. "Mutational analysis of the human MAOA gene". United States. doi:10.1002/(SICI)1096-8628(19960216)67:1<92::AID-AJMG16>3.0.CO;2-K.
@article{osti_437203,
title = {Mutational analysis of the human MAOA gene},
author = {Tivol, E.A. and Shalish, C. and Schuback, D.E. and Breakefield, X.O. and Hsu, Yun-Pung},
abstractNote = {The monoamine oxidases (MAO-A and MAO-B) are the enzymes primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine, and serotonin. Wide variations in activity of these isozymes have been reported in control humans. The MAOA and MAOB genes are located next to each other in the p11.3-11.4 region of the human X chromosome. Our recent documentation of an MAO-A-deficiency state, apparently associated with impulsive aggressive behavior in males, has focused attention on genetic variations in the MAOA gene. In the present study, variations in the coding sequence of the MAOA gene were evaluated by RT-PCR, SSCP, and sequencing of mRNA or genomic DNA in 40 control males with >100-fold variations in MAOA activity, as measured in cultured skin fibroblasts. Remarkable conservation of the coding sequence was found, with only 5 polymorphisms observed. All but one of these were in the third codon position and thus did not alter the deduced amino acid sequence. The one amino acid alteration observed, lys{r_arrow}arg, was neutral and should not affect the structure of the protein. This study demonstrates high conservation of coding sequence in the human MAOA gene in control males, and provides primer sets which can be used to search genomic DNA for mutations in this gene in males with neuropsychiatric conditions. 47 refs., 1 fig., 2 tabs.},
doi = {10.1002/(SICI)1096-8628(19960216)67:1<92::AID-AJMG16>3.0.CO;2-K},
journal = {American Journal of Medical Genetics},
number = 1,
volume = 67,
place = {United States},
year = 1996,
month = 2
}
  • Automated DNA sequencers can be readily adapted for various types of sequence-based nucleic acid analysis: more recently it was determined the distribution of UV photoproducts in the E. coli laci gene using techniques developed for automated fluorescence-based analysis. We have been working to improve the automated approach of damage distribution. Our current method is more rigorous. We have new software that integrates the area under the individual peaks, rather than measuring the height of the curve. In addition, we now employ an internal standard. The analysis can also be partially automated. Detection limits for both major types of UV-photoproducts (cyclobutanemore » dimers and pyrimidine (6-4) pyrimidone photoproducts) are reported. The UV-induced damage distribution in the hprt gene is compared to the mutational spectra in human and rodents cells.« less
  • A putative tumor suppressor gene on the short arm of human chromosome 9 has been identified recently and named as multiple tumor suppressor 1 (MTS1). MTS1 is identical to the previously identified cyclin-dependent kinase-4 inhibitor gene p16, a cell cycle regulatory protein. Frequent homozygous deletions of MTS1 gene has been documented recently in cell lines derived from different types of tumors including breast tumors, suggesting that MTS1 is a tumor suppressor gene that is probably involved in a variety of human tumors. To determine the frequency of MTS1 mutations in primary breast tumors, we screened 39 primary breast tumors (16more » lobular carcinoma and 23 ductal carcinoma) and 5 established breast tumor cell lines by utilizing single stranded conformational polymorphism (SSCP) analysis. SSCP analysis was carried out for all 3 exons of the MTS1 gene utilizing primers in the flanking intronic sequences. Two of the five breast cancer tumor cell lines analyzed exhibited deletion of the entire MTS1 gene. However, only one of the thirty-nine primary breast tumors revealed a potential SSCP variation in exon 2 of the MTS1 gene which is currently characterized by sequencing. SSCP analysis also revealed two intragenic polymorphisms, one in exon 2 and one in the 3{prime} untranslated region, that could be used to assay allelic loss directly at the MTS1 locus. These results suggest that the mutation of the MTS1 gene may not be a critical genetic change in the formation of primary breast cancer, and the deletions observed in breast tumor cell lines may be due to product of cell growth in vitro.« less
  • Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidatemore » parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.« less
  • Human severe combined immunodeficiency (SCID), a syndrome of profoundly impaired cellular and humoral immunity, is most commonly caused by mutations in the X-linked gene for interleukin-2 (IL-2) receptor {gamma} chain (IL2RG). For mutational analysis of IL2RG in males with SCID, SSCP screening was followed by DNA sequencing. Of 40 IL2RG mutations found in unrelated SCID patients, 6 were point mutations at the CpG dinucleotide at cDNA 690-691, encoding amino acid R226. This residue lies in the extracellular domain of the protein in a region not previously recognized to be significantly conserved in the cytokine receptor gene family, 11 amino acidsmore » upstream from the highly conserved WSXWS motif. Three additional instances of mutation at another CpG dinucleotide at cDNA 879 produced a premature termination signal in the intracellular domain of IL2RG, resulting in loss of the SH2-homologous intracellular domain known to be essential for signaling from the IL-2 receptor complex. Mutations at these two hotspots constitute >20% of the X-linked SCID mutations found by our group and a similar proportion of all reported IL2RG mutations. 41 refs., 5 figs., 1 tab.« less
  • Severe combined immunodeficiency (SCID), a syndrome of profoundly impaired cellular and humoral immune function, is caused by various autosomal gene defects, including adenosine deaminase (ADA) deficiency, as well as mutations in the X-linked IL2RG gene encoding the gamma chain of the lymphocyte receptor for IL-2. Mutational analysis of IL2RG was performed using genomic DNA from males with SCID referred from genetics and immunology centers. Single strand conformation polymorphisms (SSCP) were sought by PCR amplification of each of the 8 IL2RG exons using labelled flanking primers. Sequence of exons with aberrant SSCP detected a majority of unique deleterious IL2RG mutations inmore » 30 unrelated SCID patients. However, multiple mutations were seen at CpG dinucleotides, known to be C{yields}T transversion sites. cDNA 690-691 in exon 5 was mutated in 4 patients, 1 patient with each of the C{sub 690}{yields}T causing an Arg{yields}Cys substitution, and 1 with G{sub 691}{yields}A causing Arg{yields}His. Two other patients had SCID caused by a single mutation in IL2RG exon 7. This C{sub 879}{yields}T, also in a CpG, changed an Arg to STOP, resulting in loss of the SH2-related intracellular domain. In addition to our patients, 1 patient with each of the C{sub 690} and the C{sub 879} mutations have been reported by others, giving an overall incidence of 20% from our lab and 21% from all reported IL2RG SCID mutations. While ADA defects account for approximately 15% of SCID, a striking male SCID predominance suggest up to 70% of the cases are X-linked, due to IL2RG mutation. Thus, screening for mutations at the 2 CpG hot spots we have found in IL2RG can identify the genotype of as many SCID cases as are found by ADA testing.« less