Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

THE CHEMISTRY OF TRIBUTYL PHOSPHATE: A REVIEW

Technical Report ·
DOI:https://doi.org/10.2172/4334996· OSTI ID:4334996

The preparation, purification, and chemical properties of THP have been reviewed with emphasis on the hydrolytic reactions. TBP is chemically a very stable compound as evidenced by its thermal stability and resistance to oxidation. The most important reactions are hydrolytic which cleave the butyl or butoxy group and normally produce butyl alcohol together with dibutyl and monobutyl phosphate (DBP and MBP, respectively), and eventually H/sub 3/PO/sub 4/. Hydrolysis occurs in either the organic phase or the aqueous phase and is first order with respect to the ester. Although the rate in the aqueous phase is much faster than in the organic phase, the solubility is so low in aqueous solutions that the organic phase reactions become more important. Acid hydrolysis depends on both the nature of the acid and the concentration. The order with respect to acid concentration is close to one but often less than one. Hydrolysis is catalyzed by both acids and bases. In the latter case, the reaction occurs only in the aqueous phase and normally stops with the formation of dibutyl phosphate. The hydrolysis rate increases greatly as the temperature is raised and an activation energy of the order of 20 kcal is often found. The rates observed in the presence of 5 M acid at 60 and 70 deg C may be high enough to cause some concern in solvent extraction technology, since the product, dibutyl phosphate, has undesirable properties. Impurities produced during manufacture or by thermal degradation during purification such as the pyrophosphates, if present, would yield the same objectionable products as TBP hydrolysis, but at a faster rate. Included in the survey is a selected tabulation of physical properties of TBP. (auth)

Research Organization:
General Electric Co. Hanford Atomic Products Operation, Richland, Wash.
DOE Contract Number:
W-31-109-ENG-52
NSA Number:
NSA-12-005214
OSTI ID:
4334996
Report Number(s):
HW-40910
Country of Publication:
United States
Language:
English