Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Measurements of filter-cake properties

Conference ·
OSTI ID:432350

The Pressurized Fluidized-Bed Combustion (PFBC) and Integrated Gasification Combined Cycle (IGCC) programs of the U.S. Department of Energy require filtration, at temperatures from about 600 to 900 {degrees}C, of fine particles of coal ash, char, or spent and unreacted sorbent from hot-gas streams. Achieving acceptable filter lifetimes requires solutions to or avoidance of, such problems as incomplete filter cleaning, re-entrainment (i.e., re-filtration) of particles from filter cleaning, and bridging of filter cake between adjacent filters. These and other potential problems may arise from the materials properties of filter cakes, from the filter-bank design, and from the mechanisms of filter cleaning. Avoiding re-entrainment requires that some bonding and agglomeration of particles occur in the cakes (so that the agglomerates from filter cleaning are too large to be re-entrained), but excessive agglomeration can produce poor cleaning or bridging. For both PFBC and IGCC applications, we can form filter cakes at process temperatures, gas compositions, and gas flow rates, and measure the gas-phase permeabilities, porosities, tensile strengths, and deformation coefficients of these filter cakes to determine their dependencies on temperature, reaction time, gas composition, particle compositions, and particle size distributions. Filter-cake shear strengths and flow factors can be measured for powders ``as received,`` for filter cakes that we have heated to process temperatures, or for powders heated in reactive gases to simulate gas-solid reactions in process filter cakes.

Research Organization:
USDOE Morgantown Energy Technology Center, WV (United States)
Sponsoring Organization:
USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)
OSTI ID:
432350
Report Number(s):
DOE/METC/C--97/7268; CONF-960757--63; ON: DE97050683; NC: NONE
Country of Publication:
United States
Language:
English