skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RADIATION STABILITY OF ORGANIC LIQUIDS. Semi-Annual Report No. 3 for January 1 to June 30, 1958

Technical Report ·
OSTI ID:4266518

2 1 9 0 5 - completed on the nature and amount of the radiolysis products of tributyl phosphate containing equilibration quantities of 2M aqueous HNO/sub 3/, a 1: 2 volume ratio two-phase TBP-2M aqueous HNO/sub 3/ system, a 5% TBP-95% Amsco-2M HNO/sub 3/ two-phase system, four different (15-30- 45-60%) TBP-Amsco phases containing equilibration quantities of 2M HNO/sub 3/, didecyl decanephosphonate, diethyl carbonate, diethyl carbonate containing equilibration quantities of 1M HNO/sub 3/, di-(2ethylhexyl) phosphoric acid, tri- n-octyl phosphine oxide, and tri-iso-octyl amine. The effect of nitric acid on tributyl phosphate radiolysis was tested in a variety of situations. G(MBP) values obtained from the two TBPHNO/sub 3/ studies indicated that 2M HNO/sub 3/ resent either in an acid-saturated single phase, or as a second phase, increased the G(MBP) value by a factor of four. Amsco solutions of TBP in the presence of HrO/sub 3/ did not differ in G(MBP) yield from pure TBP irradiations. Acidsatarated TBP produced G(gas) values twice that of pure TBP. Amsco solutions of TBP, equilibrated with 2M HNO/sub 3/ prior to irradiation, produced G(gas) values roughly one-half of the value for pure TBP. Studies of new alternate solvents for TBP were extended to include a detailed study of diethyl carbonate for process application. Diethyl carbonate, when saturated by equilibration with 2M HNO/sub 3/, yielded G(gas) values 20% higher than pure diethyl carbonate. G(acid) levels were 1% of those found for irradiated TBP. Irradiations of didecyl decanephosphonate and tri-n-octyl phosphine oxide indicated that the two compounds had comparable G(gas) values, but the phosphine oxide produced G(acid) values three to four factors smaller. Irradiation of a commercial tri-iso-octyl amine to 1795 whr/liter dose level produced a gross target destruction by radiolysis of almost 60%. Irradiation of pure tributyl phosphate to the same dose results in about 35% destruction. Irradiation of di-(2-ethylhexyl) phosphoric acid produced a G(dibasic actd) value roughly one-third of that from DBP. However, the G(phosphoric acid) value for the compound exceeded that of DBP by a factor of six. The G/sub M/ (polymer) value was one-third that of DBP and one-half that of TBP. The G/sub M/(target) value was 50% higher than the value for TBP and 20% lower than that for DBP. Studies of factors causing poor process performance were made by evaluation of U retention and emulsification. Spinner column studies indicated that 65% of the U retention of irradiated TBP was due to DBP and only 20% due to radiation polymer. Irradiation of HNO/sub 3/-saturated TBP-Amsco systems increased the U retention, compared to that of unirradiated systems, by factors of three to four at 400 whr/liter levels. Emulsification studies indicated that radiation polymer is the main contributor to emulsification phenomena with irradiated TBP at dose levels from 25-100 whr/ liter. Degree of emulsification was increased by factors of three to four when HNO/sub 3/-saturated TBP-Amsco systems were irradiated to 400 whr/liter. Several properties of diethyl carbonate of process interest were studied. Separatory funnel studies indicated diethyl carbonate to be 50% as efficient as 25% TBP- Amsco systems for extraction of U from acidic 2M Al(NO/sub 3/)sub 3/ aqueous systems. The U retention of HNO/sub 3/-saturated diethyl carbonate, after irradiation to 380 whr/liter dose, was higher than that observed with pure irradiated diethyl carbonate at 980 whr/liter levels by a factor of two. This higher level of retention, however, is equal to that or unirradiated 25% tributyl phosphate-Amsco systems. Diethyl carbonate was evaluated as an extractant for Th from aqueous 0.2M Th(NO/sub 3/)/sub 4/-2M Al(NO/sub 3/)/sub 3/ solutions of varying HNO/sub 3/ content (0 to 4M). The solubility of diethyl

Research Organization:
Stanford Research Inst., Menlo Park, Calif.
DOE Contract Number:
W-7405-ENG-26, SUBCONTRACT 1081
NSA Number:
NSA-13-011418
OSTI ID:
4266518
Report Number(s):
AECU-4053
Resource Relation:
Other Information: SRI Project No. SD-2080-1. For Oak Ridge National Lab. Orig. Receipt Date: 31-DEC-59
Country of Publication:
United States
Language:
English