skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene

Abstract

Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.

Authors:
; ;  [1]
  1. Univ. of Texas-Houston Medical School, Houston, TX (United States) [and others
Publication Date:
OSTI Identifier:
426139
Resource Type:
Journal Article
Resource Relation:
Journal Name: American Journal of Medical Genetics; Journal Volume: 62; Journal Issue: 3; Other Information: PBD: 29 Mar 1996
Country of Publication:
United States
Language:
English
Subject:
55 BIOLOGY AND MEDICINE, BASIC STUDIES; PATIENTS; HEREDITARY DISEASES; CONGENITAL DISEASES; PHENOTYPE; CARDIOVASCULAR DISEASES; GENES; GENETIC MAPPING; GENE MUTATIONS; STRUCTURE-ACTIVITY RELATIONSHIPS; GENE AMPLIFICATION; DETECTION; CONNECTIVE TISSUE; PROTEINS; EXONS; DOMINANT MUTATIONS; INTRONS; DNA SEQUENCING

Citation Formats

Putnam, E.A., Cho, M., and Milewicz, D.M. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene. United States: N. p., 1996. Web. doi:10.1002/(SICI)1096-8628(19960329)62:3<233::AID-AJMG7>3.0.CO;2-U.
Putnam, E.A., Cho, M., & Milewicz, D.M. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene. United States. doi:10.1002/(SICI)1096-8628(19960329)62:3<233::AID-AJMG7>3.0.CO;2-U.
Putnam, E.A., Cho, M., and Milewicz, D.M. Fri . "Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene". United States. doi:10.1002/(SICI)1096-8628(19960329)62:3<233::AID-AJMG7>3.0.CO;2-U.
@article{osti_426139,
title = {Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene},
author = {Putnam, E.A. and Cho, M. and Milewicz, D.M.},
abstractNote = {Marfan syndrome is a dominantly inherited connective tissue disorder with a wide range of phenotypic severity. The condition is the result of mutations in FBN1, a large gene composed of 65 exons encoding the fibrillin-1 protein. While mutations causing classic manifestations of Marfan syndrome have been identified throughout the FBN1 gene, the six previously characterized mutations resulting in the severe, perinatal lethal form of Marfan syndrome have clustered in exons 24-32 of the gene. We screened 8 patients with either neonatal Marfan syndrome or severe cardiovascular complications of Marfan syndrome for mutations in this region of the gene. Using intron-based exon-specific primers, we amplified exons 23-32 from genomic DNAs, screened these fragments by single-stranded conformational polymorphism analysis, and sequenced indicated exons. This analysis documented mutations in exons 25-27 of the FBN1 mutations in 6 of these patients. These results, taken together with previously published FBN1 mutations in this region, further define the phenotype associated with mutations in exons 24-32 of the FBN1 gene, information important for the development of possible diagnostic tests and genetic counseling. 49 refs., 4 figs., 2 tabs.},
doi = {10.1002/(SICI)1096-8628(19960329)62:3<233::AID-AJMG7>3.0.CO;2-U},
journal = {American Journal of Medical Genetics},
number = 3,
volume = 62,
place = {United States},
year = {Fri Mar 29 00:00:00 EST 1996},
month = {Fri Mar 29 00:00:00 EST 1996}
}
  • Mutations in the gene encoding fibrillin-1 (FBN1), a component of the extracellular microfibril, cause the Marfan syndrome (MFS). This statement is supported by the observations that the classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and that a significant number of FBN1 mutations have been identified in affected individuals. We have now devised a method to screen the entire coding sequence and flanking splice junctions of FBN1. On completion for a panel of nine probands with classic MFS, six new mutations were identified that accounted for disease in seven (78%) of nine patients. Ninemore » additional new mutations have been characterized in the early stages of a larger screening project. These 15 mutations were equally distributed throughout the gene and, with one exception, were specific to single families. One-third of mutations created premature termination codons, and 6 of 15 substituted residues with putative significance for calcium finding to epidermal growth factor (EGF)-like domains. Mutations causing severe and rapidly progressive disease that presents in the neonatal period can occur in a larger region of the gene than previously demonstrated, and the nature of the mutation is as important a determinant as its location, in predisposing to this phenotype. 56 refs., 5 figs., 3 tabs.« less
  • Defects of fibrillin (FBN1), a glycoprotein component of the extracellular microfibril, cause Marfan syndrome. This disorder is characterized by marked inter- and intrafamilial variation in phenotypic severity. To understand the molecular basis for this clinical observation, the authors have screened the fibrillin gene (FBN1) on chromosome 15, including the newly cloned 5[prime] coding sequence, for disease-producing alterations in a panel of patients with a wide range of manifestations and clinical severity. All the missense mutations identified to date, including two novel mutations discussed here, are associated with classic and moderate to severe disease and occur at residues with putative significancemore » for calcium binding to epidermal growth factor (EGF)-like domains. In contrast, two new mutations that create premature signals for termination of translation of mRNA and are associated with reduction in the amount of mutant allele transcript produce a range of phenotypic severity. The patient with the lowest amount of mutant transcript has the mildest disease. These data support a role for altered calcium binding to EGF-like domains in the pathogenesis of Marfan syndrome and suggest a dominant negative mechanism for the pathogenesis of this disorder. 26 refs., 6 figs., 1 tab.« less
  • Defects in fibrillin (FNB1) cause the Marfan syndrome (MFS). Classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and a significant number of FBN1 mutations have been identified in affected individuals. Using a standard method of mutation detection, SSCP analysis of overlapping RT-PCR amplimers that span the entire coding sequence, the general experience has been a low yield of identifiable mutations, ranging from 10-20%. Possible explanations included low sensitivity of mutation screening procedures, under-representation of mutant transcript in patient samples either due to deletions or mutant alleles containing premature termination codons, clustering of mutations inmore » yet uncharacterized regions of the gene, including regulatory elements, or genetic heterogeneity. In order to compensate for a potential reduced mutant transcript stability, we have devised a method to screen directly from genomic DNA. The intronic boundaries flanking each of the 65 FBN1 exons were characterized and primer pairs were fashioned such that all splice junctions would be included in the resultant amplimers. The entire gene was screened for a panel of 9 probands with classic Marfan syndrome using mutation detection enhancement (MDE) gel heteroduplex analysis. A mutation was identified in 5/9 (55%) of patient samples. All were either missense mutations involving a cysteine residue or small deletions that did not create a frame shift. In addition, 10 novel polymorphisms were found. We conclude that the majority of mutations causing Marfan syndrome reside in the FBN1 gene and that mutations creating premature termination codons are not the predominant cause of inefficient mutation detection using RT-PCR. We are currently modifying screening methods to increase sensitivity and targeting putative FBN1 gene promoter sequences for study.« less
  • We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less
  • Apart from typical Marfan syndrome (MS), several Marfan-like conditions are known. One of those is the MASS syndrome (Mitral involvement, Aortic dilatation, Skin and Skeletal abnormalities) defined by Pyeritz et al. Among these, a dominantly inherited mitral valve prolapse with marfanoid habitus have also been reported. Until now, except for a Marfan-like condition described by Boileau et al., all Marfan families are linked to fib 15. A large Belgian pedigree with 25 affected patients among 62 at risk subjects spanning four generations is described. A syndrome including marfanoid skeletal dysplasia (tall stature, dolichostenomelia, arachnodactyly, pectus carinatum joint dislocation), prolapse and/ormore » myxomatous degeneration of the mitral valve, but without aortic dilatation of eye involvement was observed. Although the phenotype fulfills Berlin diagnostic criteria for MS, it closely resembles MASS syndrome. Preliminary linkage results show discordance aggregation insertion in the fib 15 gene, as evaluated by intragenic microsatellite fib 15. Since Dietz et al. described a similar patient with fib 15 gene, we suggest that this variant of Marfan syndrome is genetically heterogeneous and caused by mutations, some of which are allelic to classical Marfan syndrome plus a subtype, some of which are not. Linkage studies are under way to further characterize the gene involved in the present family.« less